亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 因式分解教案

      時間:2022-10-13 21:04:50 教案 投訴 投稿

      因式分解教案模板匯編五篇

        作為一位優(yōu)秀的人民教師,時常需要編寫教案,教案有助于學生理解并掌握系統(tǒng)的知識。教案應該怎么寫才好呢?以下是小編收集整理的因式分解教案5篇,歡迎閱讀與收藏。

      因式分解教案模板匯編五篇

      因式分解教案 篇1

        知識點:

        因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

        教學目標:

        理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

        考查重難點與常見題型:

        考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

        教學過程:

        因式分解知識點

        多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的'常用方法有:

       。1)提公因式法

        如多項式

        其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

       。2)運用公式法,即用

        寫出結(jié)果。

       。3)十字相乘法

        對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足

        a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

       。4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

        分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

       。5)求根公式法:如果有兩個根X1,X2,那么

        2、教學實例:學案示例

        3、課堂練習:學案作業(yè)

        4、課堂:

        5、板書:

        6、課堂作業(yè):學案作業(yè)

        7、教學反思:

      因式分解教案 篇2

        因式分解

        教材分析

        因式分解是進行代數(shù)式恒等變形的重要手段之一,因式分解是在學習整式四則運算的基礎(chǔ)上進行的,它不僅僅在多項式的除法、簡便運算中等有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學好因式分解對于代數(shù)知識的后續(xù)學習,具有相當重要的好處。由于本節(jié)課后學習提取公因式法,運用公式法,分組分解法來進行因式分解,務必以理解因式分解的概念為前提,所以本節(jié)資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法是教學中的難點。

        教學目標

        認知目標:(1)理解因式分解的概念和好處

       。2)認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。

        潛力目標:由學生自行探求解題途徑,培養(yǎng)學生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學生智能,深化學生逆向思維潛力和綜合運用潛力。

        情感目標:培養(yǎng)學生理解矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學態(tài)度。

        目標制定的思想

        1.目標具體化、明確化,從學生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。

        2.課堂教學體現(xiàn)潛力立意。

        3.寓德育教育于教學之中。

        教學方法

        1.采用以設(shè)疑探究的引課方式,激發(fā)學生的求知欲望,提高學生的學習興趣和學習用心性。

        2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓練學生思維,以設(shè)疑——感知——概括——運用為教學程序,充分遵循學生的認知規(guī)律,使學生能順利地掌握重點,突破難點,提高潛力。

        3.在課堂教學中,引導學生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學生充分地動腦、動口、動手,用心參與到教學中來,充分體現(xiàn)了學生的主動性原則。

        4.在充分尊重教材的前提下,融教材練習、想一想于教學過程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓練題目,為學生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。

        5.改變傳統(tǒng)言傳身教的方式,利用計算機輔助教學手段進行教學,增大教學的容量和直觀性,提高教學效率和教學質(zhì)量。

        教學過程安排

        一、提出問題,創(chuàng)設(shè)情境

        問題:看誰算得快?(計算機出示問題)

       。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

        (2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000

       。3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

        二、觀察分析,探究新知

        (1)請每題想得最快的同學談思路,得出最佳解題方法(同時計算機出示答案)

        (2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個什么式子?右邊又是什么形式?

        a2—2ab+b2=(a—b)2②

        20x2+60x=20x(x+3)③

       。3)類比小學學過的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。

        板書課題:§7。1因式分解

        1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

        三、獨立練習,鞏固新知

        練習

        1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)

       、伲▁+2)(x—2)=x2—4

       、趚2—4=(x+2)(x—2)

        ③a2—2ab+b2=(a—b)2

       、3a(a+2)=3a2+6a

       、3a2+6a=3a(a+2)

       、辺2—4+3x=(x—2)(x+2)+3x

       、遦2++2=(k+)2

       、鄕—2—1=(x—1+1)(x—1—1)

       、18a3bc=3a2b·6ac

        2.因式分解與整式乘法的關(guān)系:

        因式分解

        結(jié)合:a2—b2=========(a+b)(a—b)

        整式乘法

        說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。

        結(jié)論:因式分解與整式乘法正好相反。

        問題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個因式分解的例子嗎?

       。ㄈ纾河桑▁+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

        由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

        四、例題教學,運用新知:

        例:把下列各式分解因式:(計算機演示)

        (1)am+bm(2)a2—9(3)a2+2ab+b2

       。4)2ab—a2—b2(5)8a3+b6

        練習2:填空:(計算機演示)

       。1)∵2xy=2x2y—6xy2

        ∴2x2y—6xy2=2xy

       。2)∵xy=2x2y—6xy2

        ∴2x2y—6xy2=xy

       。3)∵2x=2x2y—6xy2

        ∴2x2y—6xy2=2x

        五、強化訓練,掌握新知:

        練習3:把下列各式分解因式:(計算機演示)

        (1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

       。4)x2+—x(5)x2—0。01(6)a3—1

       。ㄗ寣W生上來板演)

        六、變式訓練,擴展新知(計算機演示)

        1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=

        2.機動題:(填空)x2—8x+m=(x—4),且m=

        七、整理知識,構(gòu)成結(jié)構(gòu)(即課堂小結(jié))

        1.因式分解的概念因式分解是整式中的'一種恒等變形

        2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。

        3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。

        4.教學中滲透對立統(tǒng)一,以不變應萬變的辯證唯物主義的思想方法。

        八、布置作業(yè)

        1.作業(yè)本(一)中§7。1節(jié)

        2.選做題:①x2+x—m=(x+3),且m=。

        ②x2—3x+k=(x—5),且k=。

        評價與反饋

        1.透過由學生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學生觀察、分析問題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問題,及時反饋。

        2.透過例題及練習,了解學生對概念的理解程度和實際運用潛力,最大限度地讓學生暴露問題和認知誤差,及時發(fā)現(xiàn)和彌補教與學中的遺漏和不足,從而及時調(diào)控教與學。

        3.透過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時評價,及時矯正。

        4.透過課后作業(yè),了解學生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學生面批作業(yè),能夠更及時、更準確地了解學生思維發(fā)展的狀況,矯正的針對性更強。

        5.透過課堂小結(jié),了解學生對概念的熟悉程度和歸納概括潛力、語言表達潛力、知識運用潛力,教師恰當?shù)亟o予引導和啟迪。

        6.課堂上反饋信息除了語言和練習外,學生神情也是信息來源,而且這些信息更真實。學生神態(tài)、表情、坐姿都反映出學生對教師教學資料的理解和理解程度。教師應用心捕捉學生在知識掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調(diào)節(jié)教學。

      因式分解教案 篇3

        教學目標

        1.知識與技能

        了解因式分解的意義,以及它與整式乘法的關(guān)系.

        2.過程與方法

        經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

        3.情感、態(tài)度與價值觀

        在探索因式分解的方法的活動中,培養(yǎng)學生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學知識的內(nèi)在含義與價值.

        重、難點與關(guān)鍵

        1.重點:了解因式分解的意義,感受其作用.

        2.難點:整式乘法與因式分解之間的關(guān)系.

        3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解.

        教學方法

        采用“激趣導學”的教學方法.

        教學過程

        一、創(chuàng)設(shè)情境,激趣導入

        【問題牽引】

        請同學們探究下面的2個問題:

        問題1:720能被哪些數(shù)整除?談談你的想法.

        問題2:當a=102,b=98時,求a2-b2的值.

        二、豐富聯(lián)想,展示思維

        探索:你會做下面的填空嗎?

        1.ma+mb+mc=( )( );

        2.x2-4=( )( );

        3.x2-2xy+y2=( )2.

        【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.

        三、小組活動,共同探究

        【問題牽引】

       。1)下列各式從左到右的變形是否為因式分解:

       、伲▁+1)(x-1)=x2-1;

       、赼2-1+b2=(a+1)(a-1)+b2;

       、7x-7=7(x-1).

       。2)在下列括號里,填上適當?shù)捻,使等式成立?/p>

       、9x2(______)+y2=(3x+y)(_______);

       、趚2-4xy+(_______)=(x-_______)2.

        四、隨堂練習,鞏固深化

        課本練習.

        【探研時空】計算:993-99能被100整除嗎?

        五、課堂總結(jié),發(fā)展?jié)撃?/strong>

        由學生自己進行小結(jié),教師提出如下綱目:

        1.什么叫因式分解?

        2.因式分解與整式運算有何區(qū)別?

        六、布置作業(yè),專題突破

        選用補充作業(yè).

        板書設(shè)計

        15.4.1 因式分解

        1、因式分解 例:

        練習:

        15.4.2 提公因式法

        教學目標

        1.知識與技能

        能確定多項式各項的公因式,會用提公因式法把多項式分解因式.

        2.過程與方法

        使學生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學化歸思想方法進行因式分解.

        3.情感、態(tài)度與價值觀

        培養(yǎng)學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應用價值.

        重、難點與關(guān)鍵

        1.重點:掌握用提公因式法把多項式分解因式.

        2.難點:正確地確定多項式的最大公因式.

        3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

        教學方法

        采用“啟發(fā)式”教學方法.

        教學過程

        一、回顧交流,導入新知

        【復習交流】

        下列從左到右的變形是否是因式分解,為什么?

       。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

        (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

       。5)x2-2xy+y2=(x-y)2.

        問題:

        1.多項式mn+mb中各項含有相同因式嗎?

        2.多項式4x2-x和xy2-yz-y呢?

        請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.

        【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的'公因式是y.

        概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.

        二、小組合作,探究方法

        【教師提問】 多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?

        【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

        三、范例學習,應用所學

        【例1】把-4x2yz-12xy2z+4xyz分解因式.

        解:-4x2yz-12xy2z+4xyz

        =-(4x2yz+12xy2z-4xyz)

        =-4xyz(x+3y-1)

        【例2】分解因式,3a2(x-y)3-4b2(y-x)2

        【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

        解法1:3a2(x-y)3-4b2(y-x)2

        =-3a2(y-x)3-4b2(y-x)2

        =-[(y-x)23a2(y-x)+4b2(y-x)2]

        =-(y-x)2 [3a2(y-x)+4b2]

        =-(y-x)2(3a2y-3a2x+4b2)

        解法2:3a2(x-y)3-4b2(y-x)2

        =(x-y)23a2(x-y)-4b2(x-y)2

        =(x-y)2 [3a2(x-y)-4b2]

        =(x-y)2(3a2x-3a2y-4b2)

        【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.

        【教師活動】引導學生觀察并分析怎樣計算更為簡便.

        解:0.84×12+12×0.6-0.44×12

        =12×(0.84+0.6-0.44)

        =12×1=12.

        【教師活動】在學生完全例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?

        四、隨堂練習,鞏固深化

        課本P167練習第1、2、3題.

        【探研時空】

        利用提公因式法計算:

        0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

        五、課堂總結(jié),發(fā)展?jié)撃?/strong>

        1.利用提公因式法因式分解,關(guān)鍵是找準最大公因式.在找最大公因式時應注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.

        2.因式分解應注意分解徹底,也就是說,分解到不能再分解為止.

        六、布置作業(yè),專題突破

        課本P170習題15.4第1、4(1)、6題.

        板書設(shè)計

        15.4.2 提公因式法

        1、提公因式法 例:

        練習:

        15.4.3 公式法(一)

        教學目標

        1.知識與技能

        會應用平方差公式進行因式分解,發(fā)展學生推理能力.

        2.過程與方法

        經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性.

        3.情感、態(tài)度與價值觀

        培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值.

        重、難點與關(guān)鍵

        1.重點:利用平方差公式分解因式.

        2.難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性.

        3.關(guān)鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來.

        教學方法

        采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.

        教學過程

        一、觀察探討,體驗新知

        【問題牽引】

        請同學們計算下列各式.

       。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

        【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.

       。1)(a+5)(a-5)=a2-52=a2-25;

       。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

        【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.

        1.分解因式:a2-25; 2.分解因式16m2-9n.

        【學生活動】從逆向思維入手,很快得到下面答案:

       。1)a2-25=a2-52=(a+5)(a-5).

       。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

        【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.

        平方差公式:a2-b2=(a+b)(a-b).

        評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).

        二、范例學習,應用所學

        【例1】把下列各式分解因式:(投影顯示或板書)

       。1)x2-9y2; (2)16x4-y4;

       。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

       。5)m2(16x-y)+n2(y-16x).

        【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

        【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.

        【學生活動】分四人小組,合作探究.

        解:(1)x2-9y2=(x+3y)(x-3y);

       。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

       。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

       。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

       。5)m2(16x-y)+n2(y-16x)

        =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

        三、隨堂練習,鞏固深化

        課本P168練習第1、2題.

        【探研時空】

        1.求證:當n是正整數(shù)時,n3-n的值一定是6的倍數(shù).

        2.試證兩個連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.

        四、課堂總結(jié),發(fā)展?jié)撃?/strong>

        運用平方差公式因式分解,首先應注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通常考慮應用平方差公式;如果多項式中有公因式可提,應先提取公因式,而且還要“提”得徹底,最后應注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.

        五、布置作業(yè),專題突破

        課本P171習題15.4第2、4(2)、11題.

        板書設(shè)計

        15.4.3 公式法(一)

        1、平方差公式: 例:

        a2-b2=(a+b)(a-b) 練習:

        15.4.3 公式法(二)

        教學目標

        1.知識與技能

        領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

        2.過程與方法

        經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

        3.情感、態(tài)度與價值觀

        培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

        重、難點與關(guān)鍵

        1.重點:理解完全平方公式因式分解,并學會應用.

        2.難點:靈活地應用公式法進行因式分解.

        3.關(guān)鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應用公式法分解因式的目的.

        教學方法

        采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內(nèi)容.

        教學過程

        一、回顧交流,導入新知

        【問題牽引】

        1.分解因式:

       。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

       。3) x2-0.01y2.

      因式分解教案 篇4

        教學設(shè)計思想:

        本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運用公式進行多項式的因式分解。第一課時的內(nèi)容是用平方差公式對多項式進行因式分解,首先提出新問題:x2-4與y2-25怎樣進行因式分解,讓學生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學生的'逆向思維和推理能力,然后讓學生獨立去做例題、練習中的題目,并對結(jié)果通過展示、解釋、相互點評,達到能較好的運用平方差公式進行因式分解的目的。第二課時利用完全平方公式進行多項式的因式分解是在學生已經(jīng)學習了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進行的,因此在教學設(shè)計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學方法,引導學生積極思考問題,從中培養(yǎng)學生的思維品質(zhì)。

        教學目標

        知識與技能:

        會用平方差公式對多項式進行因式分解;

        會用完全平方公式對多項式進行因式分解;

        能夠綜合運用提公因式法、平方差公式、完全平方公式對多項式進行因式分解;

        提高全面地觀察問題、分析問題和逆向思維的能力。

        過程與方法:

        經(jīng)歷用公式法分解因式的探索過程,進一步體會這兩個公式在因式分解和整式乘法中的不同方向,加深對整式乘法和因式分解這兩個相反變形的認識,體會從正逆兩方面認識和研究事物的方法。

        情感態(tài)度價值觀:

        通過學習進一步理解數(shù)學知識間有著密切的聯(lián)系。

        教學重點和難點

        重點:①運用平方差公式分解因式;②運用完全平方式分解因式。

        難點:①靈活運用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運用完全平方公式分解因式

        關(guān)鍵:把握住因式分解的基本思路,觀察多項式的特征,靈活地運用換元和劃歸思想。

      因式分解教案 篇5

        第十五章 整式的乘除與因式分解

        根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).

        15.1.2 整式的`加減

       。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

        四、提高練習:

        1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?

        2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

        3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應點如圖:

        試化簡:│a│-│a+b│+│c-a│+│b+c│

        小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進行運算。

        作 業(yè):課本P14習題1.3:1(2)、(3)、(6),2。

        《課堂感悟與探究》

      【因式分解教案】相關(guān)文章:

      因式分解教案04-02

      因式分解復習教案08-25

      人教版因式分解教案01-04

      精選因式分解教案3篇03-13

      【必備】因式分解教案4篇02-20

      【推薦】因式分解教案三篇02-21

      因式分解教案模板8篇01-31

      因式分解教案模板7篇03-08

      【熱門】因式分解教案3篇03-03

      因式分解教案匯編5篇02-26