亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 因式分解教案

      時間:2024-06-04 15:54:44 教案 投訴 投稿

      因式分解教案范文匯總七篇

        作為一位杰出的老師,常常需要準備教案,借助教案可以更好地組織教學活動。那么教案應(yīng)該怎么寫才合適呢?下面是小編精心整理的因式分解教案7篇,歡迎閱讀,希望大家能夠喜歡。

      因式分解教案范文匯總七篇

      因式分解教案 篇1

        第1課時

        1.使學生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.

        2.讓學生會確定多項式中各項的公因式,會用提公因式法進行因式分解.

        自主探索,合作交流.

        1.通過與因數(shù)分解的類比,讓學生感悟數(shù)學中數(shù)與式的共同點,體驗數(shù)學的類比思想.

        2.通過對因式分解的教學,培養(yǎng)學生“換元”的意識.

        【重點】 因式分解的概念及提公因式法的應(yīng)用.

        【難點】 正確找出多項式中各項的公因式.

        【教師準備】 多媒體.

        【學生準備】 復習有關(guān)乘法分配律的知識.

        導入一:

        【問題】 一塊場地由三個長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.

        解法1:這塊場地的面積=×+×+×=++==2.

        解法2:這塊場地的面積=×+×+×=×=×4=2.

        從上面的解答過程看,解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是將多項式化為幾個整式的積的形式的一種方法.

        [設(shè)計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).

        導入二:

        【問題】 計算×15-×9+×2采用什么方法?依據(jù)是什么?

        解法1:原式=-+==5.

        解法2:原式=×(15-9+2)=×8=5.

        解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是把多項式化為幾個整式的積的形式的一種方法.

        [設(shè)計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).

        一、提公因式法分解因式的概念

        思路一

        [過渡語] 上一節(jié)我們學習了什么是因式分解,那么怎樣進行因式分解呢?我們來看下面的問題.

        如果一塊場地由三個長方形組成,這三個長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號來連接,即:a+b+c=(a+b+c).

        大家注意觀察這個等式,等式左邊的每一項有什么特點?各項之間有什么聯(lián)系?等式右邊的項有什么特點?

        分析:等式左邊的每一項都含有因式,等式右邊是與多項式a+b+c的乘積,從左邊到右邊的過程是因式分解.

        由于是左邊多項式a+b+c中的各項a,b,c都含有的一個相同因式,因此叫做這個多項式各項的公因式.

        由上式可知,把多項式a+b+c寫成與多項式a+b+c的乘積的形式,相當于把公因式從各項中提出來,作為多項式a+b+c的一個因式,把從多項式a+b+c的各項中提出后形成的多項式a+b+c,作為多項式a+b+c的另一個因式.

        總結(jié):如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

        [設(shè)計意圖] 通過實例的教學,使學生明白什么是公因式和用提公因式法分解因式.

        思路二

        [過渡語] 同學們,我們來看下面的問題,看看同學們誰先做出來.

        多項式 ab+ac中,各項都含有相同的因式嗎?多項式 3x2+x呢?多項式b2+nb-b呢?

        結(jié)論:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式.

        多項式2x2+6x3中各項的公因式是什么?你能嘗試將多項式2x2+6x3因式分解嗎?

        結(jié)論:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

        [設(shè)計意圖] 從讓學生找出幾個簡單多項式的公因式,再到讓學生嘗試將多項式分解因式,使學生理解公因式以及提公因式法分解因式的概念.

        二、例題講解

        [過渡語] 剛剛我們學習了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進行因式分解吧.

        (教材例1)把下列各式因式分解:

        (1)3x+x3;

        (2)7x3-21x2;

        (3)8a3b2-12ab3c+ab;

        (4)-24x3+12x2-28x.

        〔解析〕 首先要找出各項的公因式,然后再提取出來.要避免提取公因式后,各項中還有公因式,即“沒提徹底”的現(xiàn)象.

        解:(1)3x+x3=x3+xx2=x(3+x2).

        (2)7x3-21x2=7x2x-7x23=7x2(x-3).

        (3)8a3b2-12ab3c+ab

        =ab8a2b-ab12b2c+ab1

        =ab(8a2b-12b2c+1).

        (4)-24x3+12x2-28x

        =-(24x3-12x2+28x)

        =-(4x6x2-4x3x+4x7)

        =-4x(6x2-3x+7).

        【學生活動】 通過剛才的練習,大家互相交流,總結(jié)出提取公因式的一般步驟和容易出現(xiàn)的問題.

        總結(jié):提取公因式的步驟:(1)找公因式;(2)提公因式.

        容易出現(xiàn)的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號時,沒有把后面的因式中的每一項都變號.

        教師提醒:

        (1)各項都含有的字母的最低次冪的積是公因式的字母部分;

        (2)因式分解后括號內(nèi)的多項式的項數(shù)與原多項式的項數(shù)相同;

        (3)若多項式的首項為“-”,則先提取“-”號,然后再提取其他公因式;

        (4)將分解因式后的式子再進行整式的乘法運算,其積應(yīng)與原式相等.

        [設(shè)計意圖] 經(jīng)歷用提公因式法進行因式分解的過程,在教師的啟發(fā)與指導下,學生自己歸納出提公因式的步驟及提取公因式時容易出現(xiàn)的類似問題,為提取公因式積累經(jīng)驗.

        1.提公因式法分解因式的一般形式,如:

        a+b+c=(a+b+c).

        這里的字母a,b,c,可以是一個系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項式.

        2.提公因式法分解因式的'關(guān)鍵在于發(fā)現(xiàn)多項式的公因式.

        3.找公因式的一般步驟:

        (1)若各項系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);

        (2)取各項中相同的字母,字母的指數(shù)取最低的;

        (3)所有這些因式的乘積即為公因式.

        1.多項式-6ab2+18a2b2-12a3b2c的公因式是( )

        A.-6ab2cB.-ab2

        C.-6ab2D.-6a3b2c

        解析:根據(jù)確定多項式各項的公因式的方法,可知公因式為-6ab2.故選C.

        2.下列用提公因式法分解因式正確的是( )

        A.12abc-9a2b2=3abc(4-3ab)

        B.3x2-3x+6=3(x2-x+2)

        C.-a2+ab-ac=-a(a-b+c)

        D.x2+5x-=(x2+5x)

        解析:A.12abc-9a2b2=3ab(4c-3ab),錯誤;B.3x2-3x+6=3(x2-x+2),錯誤;D.x2+5x-=(x2+5x-1),錯誤.故選C.

        3.下列多項式中應(yīng)提取的公因式為5a2b的是( )

        A.15a2b-20a2b2

        B.30a2b3-15ab4-10a3b2

        C.10a2b-20a2b3+50a4b

        D.5a2b4-10a3b3+15a4b2

        解析:B.應(yīng)提取公因式5ab2,錯誤;C.應(yīng)提取公因式10a2b,錯誤;D.應(yīng)提取公因式5a2b2,錯誤.故選A.

        4.填空.

        (1)5a3+4a2b-12abc=a( );

        (2)多項式32p2q3-8pq4的公因式是 ;

        (3)3a2-6ab+a= (3a-6b+1);

        (4)因式分解:+n= ;

        (5)-15a2+5a= (3a-1);

        (6)計算:21×3.14-31×3.14= .

        答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

        5.用提公因式法分解因式.

        (1)8ab2-16a3b3;

        (2)-15x-5x2;

        (3)a3b3+a2b2-ab;

        (4)-3a3-6a2+12a.

        解:(1)8ab2(1-2a2b).

        (2)-5x(3+x).

        (3)ab(a2b2+ab-1).

        (4)-3a(a2+2a-4).

        第1課時

        一、教材作業(yè)

        【必做題】

        教材第96頁隨堂練習.

        【選做題】

        教材第96頁習題4.2.

        二、課后作業(yè)

        【基礎(chǔ)鞏固】

        1.把多項式4a2b+10ab2分解因式時,應(yīng)提取的公因式是 .

        2.(20xx淮安中考)因式分解:x2-3x= .

        3.分解因式:12x3-18x22+24x3=6x .

        【能力提升】

        4.把下列各式因式分解.

        (1)3x2-6x;

        (2)5x23-25x32;

        (3)-43+162-26;

        (4)15x32+5x2-20x23.

        【拓展探究】

        5.分解因式:an+an+2+a2n.

        6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來.

        【答案與解析】

        1.2ab

        2.x(x-3)

        3.(2x2-3x+42)

        4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

        5.解:原式=an1+ana2+anan=an(1+a2+an).

        6.解:由題中給出的幾個式子可得出規(guī)律:n2+n=n(n+1).

        本節(jié)運用類比的思想方法,在新概念的提出、新知識點的講授過程中,使學生易于理解和掌握.如學生在接受提公因式法時,由提公因數(shù)到提公因式,由整式乘法的逆運算到提公因式法的概念,都是利用了類比的數(shù)學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解.

        在小組討論之前,應(yīng)該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問.

        由于因式分解的主要目的是對多項式進行恒等變形,它的作用更多的是應(yīng)用于多項式的計算和化簡,比如在以后將要學習的分式運算、解分式方程等中都要用到因式分解的知識,因此應(yīng)該注重因式分解的概念和方法的教學.

        隨堂練習(教材第96頁)

        解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

        習題4.2(教材第96頁)

        1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

        2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

        3.解:(1)不正確,因為提取的公因式不對,應(yīng)為n(2n--1). (2)不正確,因為提取公因式-b后,第三項沒有變號,應(yīng)為-b(ab-2a+3). (3)正確. (4)不正確,因為最后的結(jié)果不是乘積的形式,應(yīng)為(a-2)(a+1).

        提公因式法是本章的第2小節(jié),占兩個課時,這是第一課時,它主要讓學生經(jīng)歷從乘法分配律的逆運算到提公因式的過程,讓學生體會數(shù)學中的一種主要思想——類比思想.運用類比的思想方法,在新概念的提出、新知識點的講授過程中,可以使學生易于理解和掌握.如學生在接受提公因式法時,由整式乘法的逆運算到提公因式法的概念,就利用了類比的數(shù)學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解,進而使學生進一步理解因式分解與整式乘法運算之間的互逆關(guān)系.

        已知方程組求7(x-3)2-2(3-x)3的值.

        〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個因式,再根據(jù)方程組整體代入,使計算簡便.

        解:7(x-3)2-2(3-x)3

        =(x-3)2[7+2(x-3)]

        =(x-3)2(7+2x-6)

        =(x-3)2(2x+).

        由方程組可得原式=12×6=6.

      因式分解教案 篇2

        一、運用平方差公式分解因式

        教學目標1、使學生了解運用公式來分解因式的意義。

        2、使學生理解平方差公式的意義,弄清平方差公式的形式和特點;使學生知道把乘法公式反過來就可以得到相應(yīng)的因式分解。

        3、掌握運用平方差公式分解因式的方法,能正確運用平方差公式把多項式分解因式(直接用公式不超過兩次)

        重點運用平方差公式分解因式

        難點靈活運用平方差公式分解因式

        教學方法對比發(fā)現(xiàn)法課型新授課教具投影儀

        教師活動學生活動

        情景設(shè)置:

        同學們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來的`?

        (學生或許還有其他不同的解決方法,教師要給予充分的肯定)

        新課講解:

        從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學過的哪一個乘法公式?

        首先我們來做下面兩題:(投影)

        1.計算下列各式:

        (1)(a+2)(a-2)=;

        (2)(a+b)(a-b)=;

        (3)(3a+2b)(3a-2b)=.

        2.下面請你根據(jù)上面的算式填空:

        (1)a2-4=;

        (2)a2-b2=;

        (3)9a2-4b2=;

        請同學們對比以上兩題,你發(fā)現(xiàn)什么呢?

        事實上,像上面第2題那樣,把一個多項式寫成幾個整式積的形式叫做多項式的因式分解。(投影)

        比如:a2–16=a2–42=(a+4)(a–4)

        例題1:把下列各式分解因式;(投影)

        (1)36–25x2;(2)16a2–9b2;

        (3)9(a+b)2–4(a–b)2.

        (讓學生弄清平方差公式的形式和特點并會運用)

        例題2:如圖,求圓環(huán)形綠化區(qū)的面積

        練習:第87頁練一練第1、2、3題

        小結(jié):

        這節(jié)課你學到了什么知識,掌握什么方法?

        教學素材:

        A組題:

        1.填空:81x2-=(9x+y)(9x-y);=

        利用因式分解計算:=。

        2、下列多項式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

        (1)1-16a2(2)9a2x2-b2y2

        (3).49(a-b)2-16(a+b)2

        B組題:

        1分解因式81a4-b4=

        2若a+b=1,a2+b2=1,則ab=;

        3若26+28+2n是一個完全平方數(shù),則n=.

        由學生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學生)補充.

        學生回答1:

        992-1=99×99-1=9801-1

        =9800

        學生回答2:992-1就是(99+1)(99-1)即100×98

        學生回答:平方差公式

        學生回答:

        (1):a2-4

        (2):a2-b2

        (3):9a2-4b2

        學生輕松口答

        (a+2)(a-2)

        (a+b)(a-b)

        (3a+2b)(3a-2b)

        學生回答:

        把乘法公式

        (a+b)(a-b)=a2-b2

        反過來就得到

        a2-b2=(a+b)(a-b)

        學生上臺板演:

        36–25x2=62–(5x)2

        =(6+5x)(6–5x)

        16a2–9b2=(4a)2–(3b)2

        =(4a+3b)(4a–3b)

        9(a+b)2–4(a–b)2

        =[3(a+b)]2–[2(a–b)]2

        =[3(a+b)+2(a–b)]

        [3(a+b)–2(a–b)]

        =(5a+b)(a+5b)

        解:352π–152π

        =π(352–152)

        =(35+15)(35–15)π

        =50×20π

        =1000π(m2)

        這個綠化區(qū)的面積是

        1000πm2

        學生歸納總結(jié)

      因式分解教案 篇3

        教學目標:

        1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實際問題。

        2、經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。

        3、通過對公式的探究,深刻理解公式的應(yīng)用,并會熟練應(yīng)用公式解決問題。

        4、通過探究平方差公式特點,學生根據(jù)公式自己取值設(shè)計問題,并根據(jù)公式自己解決問題的過程,讓學生獲得成功的體驗,培養(yǎng)合作交流意識。

        教學重點:

        應(yīng)用平方差公式分解因式.

        教學難點:

        靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.

        教學過程:

        一、復習準備 導入新課

        1、什么是因式分解?判斷下列變形過程,哪個是因式分解?

       、(x+2)(x-2)= ②

       、

        2、我們已經(jīng)學過的因式分解的方法有什么?將下列多項式分解因式。

        x2+2x

        a2b-ab

        3、根據(jù)乘法公式進行計算:

        (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

        二、合作探究 學習新知

        (一) 猜一猜:你能將下面的多項式分解因式嗎?

       。1)= (2)= (3)=

        (二)想一想,議一議: 觀察下面的公式:

       。剑╝+b)(a—b)(

        這個公式左邊的多項式有什么特征:_____________________________________

        公式右邊是__________________________________________________________

        這個公式你能用語言來描述嗎? _______________________________________

        (三)練一練:

        1、下列多項式能否用平方差公式來分解因式?為什么?

       、 ② ③ ④

        2、你能把下列的數(shù)或式寫成冪的形式嗎?

        (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

       。ㄋ模┳鲆蛔觯

        例3 分解因式:

        (1) 4x2- 9 (2) (x+p)2- (x+q)2

       。ㄎ澹┰囈辉嚕

        例4 下面的.式子你能用什么方法來分解因式呢?請你試一試。

        (1) x4- y4 (2) a3b- ab

       。┫胍幌耄

        某學校有一個邊長為85米的正方形場地,現(xiàn)在場地的四個角分別建一個邊長為5米的正方形花壇,問場地還剩余多大面積供學生課間活動使用?

      因式分解教案 篇4

        知識點:

        因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

        教學目標:

        理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

        考查重難點與常見題型:

        考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的.綜合運用。習題類型以填空題為多,也有選擇題和解答題。

        教學過程:

        因式分解知識點

        多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

       。1)提公因式法

        如多項式

        其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

       。2)運用公式法,即用

        寫出結(jié)果。

       。3)十字相乘法

        對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足

        a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

       。4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

        分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

       。5)求根公式法:如果有兩個根X1,X2,那么

        2、教學實例:學案示例

        3、課堂練習:學案作業(yè)

        4、課堂:

        5、板書:

        6、課堂作業(yè):學案作業(yè)

        7、教學反思:

      因式分解教案 篇5

        第十五章 整式的乘除與因式分解

        根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).

        15.1.2 整式的.加減

       。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

        四、提高練習:

        1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?

        2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

        3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應(yīng)點如圖:

        試化簡:│a│-│a+b│+│c-a│+│b+c│

        小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進行運算。

        作 業(yè):課本P14習題1.3:1(2)、(3)、(6),2。

        《課堂感悟與探究》

      因式分解教案 篇6

        學習目標

        1、學會用平方差公式進行因式法分解

        2、學會因式分解的而基本步驟.

        學習重難點重點

        用平方差公式進行因式法分解.

        難點

        因式分解化簡的過程

        自學過程設(shè)計教學過程設(shè)計

       看一看

       平方差公式:

        平方差公式的逆運用:

        做一做:

       1.填空題.

        (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

        (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

        2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項式是()

        A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

        3.多項式-1+0.04a2分解因式的結(jié)果是()

        A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

        C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

        4.把下列各式分解因式:

        (1)4x2-25y2;(2)0.81m2-n2;

        (3)a3-9a;(4)8x3y3-2xy.

        5.把下列各式分解因式:

        (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

        6.用簡便方法計算:3492-2512.

        想一想

       你還有哪些地方不是很懂?請寫出來。

        ____________________________________________________________________________________

        Xkb1.com預習展示一:

        1、下列多項式能否用平方差公式分解因式?

        說說你的理由。

        4x2+y2

        4x2-(-y)2

        -4x2-y2-4x2+y2

        a2-4a2+3

        2.把下列各式分解因式:

        (1)16-a2

        (2)0.01s2-t2

        (4)-1+9x2

        (5)(a-b)2-(c-b)2

        (6)-(x+y)2+(x-2y)2

        應(yīng)用探究:

       1、分解因式

        4x3y-9xy3

        變式:把下列各式分解因式

       、賦4-81y4

       、2a-8a

        2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的`長方形土地。同學們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w

        3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.

        例如用多項式x4-y4因式分解的結(jié)果來設(shè)置密碼,當取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?

        小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產(chǎn)生的密碼是什么?(寫出一個即可)

        拓展提高:

      若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.

        教后反思考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。

      因式分解教案 篇7

       。ㄒ唬學習目標

        1、會用因式分解進行簡單的多項式除法

        2、會用因式分解解簡單的方程

        (二)學習重難點重點:因式分解在多項式除法和解方程中兩方面的應(yīng)用。

        難點:應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的.難點。

       。ㄈ教學過程設(shè)計

        看一看

        1.應(yīng)用因式分解進行多項式除法.多項式除以多項式的一般步驟:

        ①________________②__________

        2.應(yīng)用因式分解解簡單的一元二次方程.

        依據(jù)__________,一般步驟:__________

        做一做

        1.計算:

        (1)(-a2b2+16)÷(4-ab);

        (2)(18x2-12xy+2y2)÷(3x-y).

        2.解下列方程:

        (1)3x2+5x=0;

        (2)9x2=(x-2)2;

        (3)x2-x+=0.

        3.完成課后練習題

        想一想

        你還有哪些地方不是很懂?請寫出來。

        ____________________________________

        (四)預習檢測

        1.計算:

        2.先請同學們思考、討論以下問題:

        (1)如果A×5=0,那么A的值

        (2)如果A×0=0,那么A的值

        (3)如果AB=0,下列結(jié)論中哪個正確( )

       、貯、B同時都為零,即A=0,

        且B=0;

       、贏、B中至少有一個為零,即A=0,或B=0;

        (五)應(yīng)用探究

        1.解下列方程

        2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

        (六)拓展提高:

        解方程:

        1、(x2+4)2-16x2=0

        2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

        (七)堂堂清練習

        1.計算

        2.解下列方程

        ①7x2+2x=0

       、趚2+2x+1=0

        ③x2=(2x-5)2

       、躼2+3x=4x

      【因式分解教案】相關(guān)文章:

      因式分解教案04-02

      人教版因式分解教案01-04

      小學數(shù)學因式分解教案03-19

      因式分解教案模板7篇03-08

      因式分解優(yōu)秀教案(精選14篇)02-20

      【必備】因式分解教案10篇10-08

      因式分解教案集合7篇04-03

      因式分解教案合集十篇04-06

      因式分解教案模板合集8篇04-03

      因式分解教案范文合集5篇04-06