亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 因式分解教案

      時(shí)間:2024-09-01 23:19:28 教案 投訴 投稿

      因式分解教案范文集錦十篇

        作為一無名無私奉獻(xiàn)的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么應(yīng)當(dāng)如何寫教案呢?下面是小編整理的因式分解教案10篇,歡迎閱讀,希望大家能夠喜歡。

      因式分解教案范文集錦十篇

      因式分解教案 篇1

        (一)學(xué)習(xí)目標(biāo)

        1、會(huì)用因式分解進(jìn)行簡單的多項(xiàng)式除法

        2、會(huì)用因式分解解簡單的方程

        (二)學(xué)習(xí)重難點(diǎn)重點(diǎn):因式分解在多項(xiàng)式除法和解方程中兩方面的`應(yīng)用。

        難點(diǎn):應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點(diǎn)。

       。ㄈ教學(xué)過程設(shè)計(jì)

        看一看

        1.應(yīng)用因式分解進(jìn)行多項(xiàng)式除法.多項(xiàng)式除以多項(xiàng)式的一般步驟:

        ①________________②__________

        2.應(yīng)用因式分解解簡單的一元二次方程.

        依據(jù)__________,一般步驟:__________

        做一做

        1.計(jì)算:

        (1)(-a2b2+16)÷(4-ab);

        (2)(18x2-12xy+2y2)÷(3x-y).

        2.解下列方程:

        (1)3x2+5x=0;

        (2)9x2=(x-2)2;

        (3)x2-x+=0.

        3.完成課后練習(xí)題

        想一想

        你還有哪些地方不是很懂?請(qǐng)寫出來。

        ____________________________________

        (四)預(yù)習(xí)檢測

        1.計(jì)算:

        2.先請(qǐng)同學(xué)們思考、討論以下問題:

        (1)如果A×5=0,那么A的值

        (2)如果A×0=0,那么A的值

        (3)如果AB=0,下列結(jié)論中哪個(gè)正確( )

       、貯、B同時(shí)都為零,即A=0,

        且B=0;

       、贏、B中至少有一個(gè)為零,即A=0,或B=0;

        (五)應(yīng)用探究

        1.解下列方程

        2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

        (六)拓展提高:

        解方程:

        1、(x2+4)2-16x2=0

        2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

        (七)堂堂清練習(xí)

        1.計(jì)算

        2.解下列方程

       、7x2+2x=0

        ②x2+2x+1=0

       、踴2=(2x-5)2

       、躼2+3x=4x

      因式分解教案 篇2

        教學(xué)目標(biāo)

        1.知識(shí)與技能

        了解因式分解的意義,以及它與整式乘法的關(guān)系.

        2.過程與方法

        經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

        3.情感、態(tài)度與價(jià)值觀

        在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.

        重、難點(diǎn)與關(guān)鍵

        1.重點(diǎn):了解因式分解的意義,感受其作用.

        2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.

        3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.

        教學(xué)方法

        采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

        教學(xué)過程

        一、創(chuàng)設(shè)情境,激趣導(dǎo)入

        【問題牽引】

        請(qǐng)同學(xué)們探究下面的2個(gè)問題:

        問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>

        問題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.

        二、豐富聯(lián)想,展示思維

        探索:你會(huì)做下面的填空嗎?

        1.ma+mb+mc=( )( );

        2.x2-4=( )( );

        3.x2-2xy+y2=( )2.

        【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.

        三、小組活動(dòng),共同探究

        【問題牽引】

        (1)下列各式從左到右的變形是否為因式分解:

       、伲▁+1)(x-1)=x2-1;

       、赼2-1+b2=(a+1)(a-1)+b2;

       、7x-7=7(x-1).

        (2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.

       、9x2(______)+y2=(3x+y)(_______);

        ②x2-4xy+(_______)=(x-_______)2.

        四、隨堂練習(xí),鞏固深化

        課本練習(xí).

        【探研時(shí)空】計(jì)算:993-99能被100整除嗎?

        五、課堂總結(jié),發(fā)展?jié)撃?/strong>

        由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

        1.什么叫因式分解?

        2.因式分解與整式運(yùn)算有何區(qū)別?

        六、布置作業(yè),專題突破

        選用補(bǔ)充作業(yè).

        板書設(shè)計(jì)

        15.4.1 因式分解

        1、因式分解 例:

        練習(xí):

        15.4.2 提公因式法

        教學(xué)目標(biāo)

        1.知識(shí)與技能

        能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

        2.過程與方法

        使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

        3.情感、態(tài)度與價(jià)值觀

        培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

        重、難點(diǎn)與關(guān)鍵

        1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

        2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

        3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

        教學(xué)方法

        采用“啟發(fā)式”教學(xué)方法.

        教學(xué)過程

        一、回顧交流,導(dǎo)入新知

        【復(fù)習(xí)交流】

        下列從左到右的變形是否是因式分解,為什么?

       。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

       。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

       。5)x2-2xy+y2=(x-y)2.

        問題:

        1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

        2.多項(xiàng)式4x2-x和xy2-yz-y呢?

        請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.

        【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

        概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

        二、小組合作,探究方法

        【教師提問】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的`公因式是什么?

        【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

        三、范例學(xué)習(xí),應(yīng)用所學(xué)

        【例1】把-4x2yz-12xy2z+4xyz分解因式.

        解:-4x2yz-12xy2z+4xyz

        =-(4x2yz+12xy2z-4xyz)

        =-4xyz(x+3y-1)

        【例2】分解因式,3a2(x-y)3-4b2(y-x)2

        【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

        解法1:3a2(x-y)3-4b2(y-x)2

        =-3a2(y-x)3-4b2(y-x)2

        =-[(y-x)23a2(y-x)+4b2(y-x)2]

        =-(y-x)2 [3a2(y-x)+4b2]

        =-(y-x)2(3a2y-3a2x+4b2)

        解法2:3a2(x-y)3-4b2(y-x)2

        =(x-y)23a2(x-y)-4b2(x-y)2

        =(x-y)2 [3a2(x-y)-4b2]

        =(x-y)2(3a2x-3a2y-4b2)

        【例3】用簡便的方法計(jì)算:0.84×12+12×0.6-0.44×12.

        【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡便.

        解:0.84×12+12×0.6-0.44×12

        =12×(0.84+0.6-0.44)

        =12×1=12.

        【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

        四、隨堂練習(xí),鞏固深化

        課本P167練習(xí)第1、2、3題.

        【探研時(shí)空】

        利用提公因式法計(jì)算:

        0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

        五、課堂總結(jié),發(fā)展?jié)撃?/strong>

        1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

        2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

        六、布置作業(yè),專題突破

        課本P170習(xí)題15.4第1、4(1)、6題.

        板書設(shè)計(jì)

        15.4.2 提公因式法

        1、提公因式法 例:

        練習(xí):

        15.4.3 公式法(一)

        教學(xué)目標(biāo)

        1.知識(shí)與技能

        會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

        2.過程與方法

        經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.

        3.情感、態(tài)度與價(jià)值觀

        培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.

        重、難點(diǎn)與關(guān)鍵

        1.重點(diǎn):利用平方差公式分解因式.

        2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.

        3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.

        教學(xué)方法

        采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.

        教學(xué)過程

        一、觀察探討,體驗(yàn)新知

        【問題牽引】

        請(qǐng)同學(xué)們計(jì)算下列各式.

       。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

        【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.

       。1)(a+5)(a-5)=a2-52=a2-25;

       。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

        【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

        1.分解因式:a2-25; 2.分解因式16m2-9n.

        【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:

       。1)a2-25=a2-52=(a+5)(a-5).

       。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

        【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.

        平方差公式:a2-b2=(a+b)(a-b).

        評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

        二、范例學(xué)習(xí),應(yīng)用所學(xué)

        【例1】把下列各式分解因式:(投影顯示或板書)

        (1)x2-9y2; (2)16x4-y4;

       。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

       。5)m2(16x-y)+n2(y-16x).

        【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

        【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.

        【學(xué)生活動(dòng)】分四人小組,合作探究.

        解:(1)x2-9y2=(x+3y)(x-3y);

       。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

       。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

       。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

        (5)m2(16x-y)+n2(y-16x)

        =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

        三、隨堂練習(xí),鞏固深化

        課本P168練習(xí)第1、2題.

        【探研時(shí)空】

        1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).

        2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.

        四、課堂總結(jié),發(fā)展?jié)撃?/strong>

        運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通?紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡,二是分解因式時(shí),每個(gè)因式都要分解徹底.

        五、布置作業(yè),專題突破

        課本P171習(xí)題15.4第2、4(2)、11題.

        板書設(shè)計(jì)

        15.4.3 公式法(一)

        1、平方差公式: 例:

        a2-b2=(a+b)(a-b) 練習(xí):

        15.4.3 公式法(二)

        教學(xué)目標(biāo)

        1.知識(shí)與技能

        領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

        2.過程與方法

        經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

        3.情感、態(tài)度與價(jià)值觀

        培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

        重、難點(diǎn)與關(guān)鍵

        1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

        2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

        3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

        教學(xué)方法

        采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

        教學(xué)過程

        一、回顧交流,導(dǎo)入新知

        【問題牽引】

        1.分解因式:

        (1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

       。3) x2-0.01y2.

      因式分解教案 篇3

        整式乘除與因式分解

        一.回顧知識(shí)點(diǎn)

        1、主要知識(shí)回顧:

        冪的運(yùn)算性質(zhì):

        aman=am+n(m、n為正整數(shù))

        同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

        =amn(m、n為正整數(shù))

        冪的乘方,底數(shù)不變,指數(shù)相乘.

        (n為正整數(shù))

        積的乘方等于各因式乘方的積.

        =am-n(a≠0,m、n都是正整數(shù),且m>n)

        同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

        零指數(shù)冪的概念:

        a0=1(a≠0)

        任何一個(gè)不等于零的數(shù)的零指數(shù)冪都等于l.

        負(fù)指數(shù)冪的概念:

        a-p=(a≠0,p是正整數(shù))

        任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個(gè)數(shù)的p指數(shù)冪的倒數(shù).

        也可表示為:(m≠0,n≠0,p為正整數(shù))

        單項(xiàng)式的乘法法則:

        單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.

        單項(xiàng)式與多項(xiàng)式的乘法法則:

        單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.

        多項(xiàng)式與多項(xiàng)式的乘法法則:

        多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.

        單項(xiàng)式的除法法則:

        單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.

        多項(xiàng)式除以單項(xiàng)式的法則:

        多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.

        2、乘法公式:

       、倨椒讲罟剑(a+b)(a-b)=a2-b2

        文字語言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.

        ②完全平方公式:(a+b)2=a2+2ab+b2

        (a-b)2=a2-2ab+b2

        文字語言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的`平方和加上(或減去)這兩個(gè)數(shù)的積的2倍.

        3、因式分解:

        因式分解的定義.

        把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.

        掌握其定義應(yīng)注意以下幾點(diǎn):

        (1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;

        (2)因式分解必須是恒等變形;

        (3)因式分解必須分解到每個(gè)因式都不能分解為止.

        弄清因式分解與整式乘法的內(nèi)在的關(guān)系.

        因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.

        二、熟練掌握因式分解的常用方法.

        1、提公因式法

        (1)掌握提公因式法的概念;

        (2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);②字母——各項(xiàng)含有的相同字母;③指數(shù)——相同字母的最低次數(shù);

        (3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來檢驗(yàn)是否漏項(xiàng).

        (4)注意點(diǎn):①提取公因式后各因式應(yīng)該是最簡形式,即分解到“底”;②如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.

        2、公式法

        運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過來使用;

        常用的公式:

       、倨椒讲罟剑篴2-b2=(a+b)(a-b)

       、谕耆椒焦剑篴2+2ab+b2=(a+b)2

        a2-2ab+b2=(a-b)2

      因式分解教案 篇4

        教學(xué)目標(biāo)

        1、進(jìn)一步鞏固因式分解的概念;

        2、鞏固因式分解常用的三種方法

        3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解

        4、應(yīng)用因式分解來解決一些實(shí)際問題

        5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣

        教學(xué)重點(diǎn)

        靈活運(yùn)用因式分解解決問題

        教學(xué)難點(diǎn):

        靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

        教學(xué)過程

        一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

        利用因式分解往往能將一些復(fù)雜的運(yùn)算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

        二、知識(shí)回顧

        1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

        判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

        (1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

        (3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

        (5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

        (7).2πR+2πr=2π(R+r)因式分解

        2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

        分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

        (2).分解的結(jié)果一定是幾個(gè)整式的.乘積的形式.(3).要分解到不能分解為止.

        3、因式分解的方法

        提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

        公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

        4、強(qiáng)化訓(xùn)練

        教學(xué)引入

        師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

        動(dòng)畫演示:

        場景一:正方形折疊演示

        師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測量各邊的長度、各角的大小、對(duì)角線的長度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長度。

        [學(xué)生活動(dòng):各自測量。]

        鼓勵(lì)學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

        講授新課

        找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

        動(dòng)畫演示:

        場景二:正方形的性質(zhì)

        師:這些性質(zhì)里那些是矩形的性質(zhì)?

        [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

        動(dòng)畫演示:

        場景三:矩形的性質(zhì)

        師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

        [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

        動(dòng)畫演示:

        場景四:菱形的性質(zhì)

        師:這說明正方形具有矩形和菱形的全部性質(zhì)。

        及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

        師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

        [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

        師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

        學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

        “有一組鄰邊相等的矩形叫做正方形。”

        “有一個(gè)角是直角的菱形叫做正方形!

        “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

        [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

        師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

        試一試把下列各式因式分解:

        (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

        (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

        三、例題講解

        例1、分解因式

        (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

        (3)(4)y2+y+

        例2、分解因式

        1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

        4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

        例3、分解因式

        1、72-2(13x-7)22、8a2b2-2a4b-8b3

        三、知識(shí)應(yīng)用

        1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

        3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

        4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

        四、拓展應(yīng)用

        1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

        2、20042+20xx被20xx整除嗎?

        3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

        五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

      因式分解教案 篇5

        學(xué)習(xí)目標(biāo)

        1、 學(xué)會(huì)用公式法因式法分解

        2、綜合運(yùn)用提取公式法、公式法分解因式

        學(xué)習(xí)重難點(diǎn) 重點(diǎn):

        完全平方公式分解因式.

        難點(diǎn):綜合運(yùn)用兩種公式法因式分解

        自學(xué)過程設(shè)計(jì)

        完全平方公式:

        完全平方公式的逆運(yùn)用:

        做一做:

        1.(1)16x2-8x+_______=(4x-1)2;

        (2)_______+6x+9=(x+3)2;

        (3)16x2+_______+9y2=(4x+3y)2;

        (4)(a-b)2-2(a-b)+1=(______-1)2.

        2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

        3.下列因式分解正確的是( )

        A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

        C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

        4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

        5.計(jì)算:20062-40102006+20052=___________________.

        6.若x+y=1,則 x2+xy+ y2的值是_________________.

        想一想

        你還有哪些地方不是很懂?請(qǐng)寫出來。

        ____________________________________________________________________________________ 預(yù)習(xí)展示一:

        1.判別下列各式是不是完全平方式.

        2、把下列各式因式分解:

        (1)-x2+4xy-4y2

        (2)3ax2+6axy+3ay2

        (3)(2x+y)2-6(2x+y)+9

        應(yīng)用探究:

        1、用簡便方法計(jì)算

        49.92+9.98 +0.12

        拓展提高:

        (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

        (2)4x2+y2-4xy-12x+6y+9=0

        求x、y關(guān)系

        (3)分解因式:m4+4

        教后反思 考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的`形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來說會(huì)難一些。

      因式分解教案 篇6

        15.1.1 整式

        教學(xué)目標(biāo)

        1.單項(xiàng)式、單項(xiàng)式的定義.

        2.多項(xiàng)式、多項(xiàng)式的次數(shù).

        3、理解整式概念.

        教學(xué)重點(diǎn)

        單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

        教學(xué)難點(diǎn)

        單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

        教學(xué)過程

       、瘢岢鰡栴},創(chuàng)設(shè)情境

        在七年級(jí),我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問題

        1.要表示△ABC的周長需要什么條件?要表示它的面積呢?

        2.小王用七小時(shí)行駛了Skm的路程,請(qǐng)問他的平均速度是多少?

        結(jié)論:

        1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.

        2.小王的平均速度是 .

        問題:這些式子有什么特征呢?

       。1)有數(shù)字、有表示數(shù)字的字母.

        (2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號(hào)連接.

        歸納:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.

        判斷上面得到的三個(gè)式子:a+b+c、 ch、 是不是代數(shù)式?(是)

        代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來學(xué)習(xí)和代數(shù)式有關(guān)的整式.

       、颍鞔_和鞏固整式有關(guān)概念

       。ǔ鍪就队埃

        結(jié)論:(1)正方形的周長:4x.

       。2)汽車走過的路程:vt.

       。3)正方體有六個(gè)面,每個(gè)面都是正方形,這六個(gè)正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.

       。4)n的相反數(shù)是-n.

        分析這四個(gè)數(shù)的特征.

        它們符合代數(shù)式的定義.這五個(gè)式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運(yùn)算符號(hào).還可以發(fā)現(xiàn)這五個(gè)代數(shù)式中字母指數(shù)各不相同,字母的個(gè)數(shù)也不盡相同.

        請(qǐng)同學(xué)們閱讀課本P160~P161單項(xiàng)式有關(guān)概念.

        根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫出它的系數(shù)和次數(shù).

        結(jié)論:4x、vt、6a2、a3、-n、 ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、 ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.

        問題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?

        結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個(gè)字母,所以它的次數(shù)應(yīng)該是這兩個(gè)字母的指數(shù)的和,而不是單個(gè)字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.

        生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?

        寫出下列式子(出示投影)

        結(jié)論:(1)t-5.(2)3x+5y+2z.

       。3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.

        (4)建筑面積等于四個(gè)矩形的面積之和.而右邊兩個(gè)已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

        我們可以觀察下列代數(shù)式:

        a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個(gè)單項(xiàng)式的和,能不能叫多項(xiàng)式?

        這樣推理合情合理.請(qǐng)看投影,熟悉下列概念.

        根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).

        a+b+c的項(xiàng)分別是a、b、c.

        t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).

        3x+5y+2z的項(xiàng)分別是3x、5y、2z.

        ab-3.12r2的項(xiàng)分別是 ab、-3.12r2.

        x2+2x+18的項(xiàng)分別是x2、2x、18. 找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個(gè)項(xiàng)的次數(shù),二是取每個(gè)項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個(gè)多項(xiàng)式中前三個(gè)是一次多項(xiàng)式,后兩個(gè)是二次多項(xiàng)式.

        這節(jié)課,通過探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時(shí),我們也到符號(hào)的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式.

        Ⅲ.隨堂練習(xí)

        1.課本P162練習(xí)

       、簦n時(shí)小結(jié)

        通過探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號(hào)感.

        Ⅴ.課后作業(yè)

        1.課本P165~P166習(xí)題15.1─1、5、8、9題.

        2.預(yù)習(xí)“整式的加減”.

        課后作業(yè):《課堂感悟與探究》

        15.1.2 整式的加減(1)

        教學(xué)目的:

        1、解字母表示數(shù)量關(guān)系的過程,發(fā)展符號(hào)感。

        2、會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及語言表達(dá)能力。

        教學(xué)重點(diǎn):

        會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理。

        教學(xué)難點(diǎn):

        正確地去括號(hào)、合并同類項(xiàng),及符號(hào)的正確處理。

        教學(xué)過程:

        一、課前練習(xí):

        1、填空:整式包括 和

        2、單項(xiàng)式 的系數(shù)是 、次數(shù)是

        3、多項(xiàng)式 是 次 項(xiàng)式,其中二次項(xiàng)

        系數(shù)是 一次項(xiàng)是 ,常數(shù)項(xiàng)是

        4、下列各式,是同類項(xiàng)的一組是( )

        (A) 與 (B) 與 (C) 與

        5、去括號(hào)后合并同類項(xiàng):

        二、探索練習(xí):

        1、如果用a 、b分別表示一個(gè)兩位數(shù)的`十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)兩位數(shù)可以表示為 交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字后得到的兩位數(shù)為

        這兩個(gè)兩位數(shù)的和為

        2、如果用a 、b、c分別表示一個(gè)三位數(shù)的百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)三位數(shù)可以表示為 交換這個(gè)三位數(shù)的百位數(shù)字和個(gè)位數(shù)字后得到的三位數(shù)為

        這兩個(gè)三位數(shù)的差為

        ●議一議:在上面的兩個(gè)問題中,分別涉及到了整式的什么運(yùn)算?

        說說你是如何運(yùn)算的?

        ▲整式的加減運(yùn)算實(shí)質(zhì)就是

        運(yùn)算的結(jié)果是一個(gè)多項(xiàng)式或單項(xiàng)式。

        三、鞏固練習(xí):

        1、填空:(1) 與 的差是

        (2)、單項(xiàng)式 、 、 、 的和為

        (3)如圖所示,下面為由棋子所組成的三角形,

        一個(gè)三角形需六個(gè)棋子,三個(gè)三角形需

        ( )個(gè)棋子,n個(gè)三角形需 個(gè)棋子

        2、計(jì)算:

       。1)

       。2)

       。3)

        3、(1)求 與 的和

        (2)求 與 的差

        4、先化簡,再求值: 其中

        四、提高練習(xí):

        1、若A是五次多項(xiàng)式,B是三次多項(xiàng)式,則A+B一定是

       。ˋ)五次整式 (B)八次多項(xiàng)式

        (C)三次多項(xiàng)式 (D)次數(shù)不能確定

        2、足球比賽中,如果勝一場記3a分,平一場記a分,負(fù)一場

        記0分,那么某隊(duì)在比賽勝5場,平3場,負(fù)2場,共積多

        少分?

        3、一個(gè)兩位數(shù)與把它的數(shù)字對(duì)調(diào)所成的數(shù)的和,一定能被14

        整除,請(qǐng)證明這個(gè)結(jié)論。

        4、如果關(guān)于字母x的二次多項(xiàng)式 的值與x的取值無關(guān),

        試求m、n的值。

        五、小結(jié):整式的加減運(yùn)算實(shí)質(zhì)就是去括號(hào)和合并同類項(xiàng)。

        六、作業(yè):第8頁習(xí)題1、2、3

        15.1.2整式的加減(2)

        教學(xué)目標(biāo):1.會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達(dá)能力。

        2.通過探索規(guī)律的問題,進(jìn)一步符號(hào)表示的意義,發(fā)展符號(hào)感,發(fā)展推理能力。

        教學(xué)重點(diǎn)整式加減的運(yùn)算。

        教學(xué)難點(diǎn):探索規(guī)律的猜想。

        教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。

        教學(xué)用具:投影儀

        教學(xué)過程:

        I探索練習(xí):

        擺第1個(gè)“小屋子”需要5枚棋子,擺第2個(gè)需要 枚棋子,擺第3個(gè)需要 枚棋子。按照這樣的方式繼續(xù)擺下去。

       。1)擺第10個(gè)這樣的“小屋子”需要 枚棋子

       。2)擺第n個(gè)這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個(gè)問題嗎?小組討論。

        二、例題講解:

        三、鞏固練習(xí):

        1、計(jì)算:

       。1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

       。3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

        2、已知:A=x3-x2-1,B=x2-2,計(jì)算:(1)B-A (2)A-3B

        3、列方程解應(yīng)用題:三角形三個(gè)內(nèi)角的和等于180°,如果三角形中第一個(gè)角等于第二個(gè)角的3倍,而第三個(gè)角比第二個(gè)角大15°,那么

        (1)第一個(gè)角是多少度?

       。2)其他兩個(gè)角各是多少度?

        四、提高練習(xí):

        1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項(xiàng)式?

        2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

       。▂+3)2=0,且B-2A=a,求A的值。

        3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:

        試化簡:│a│-│a+b│+│c-a│+│b+c│

        小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

        作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

      因式分解教案 篇7

        學(xué)習(xí)目標(biāo)

        1、學(xué)會(huì)用平方差公式進(jìn)行因式法分解

        2、學(xué)會(huì)因式分解的而基本步驟.

        學(xué)習(xí)重難點(diǎn)重點(diǎn)

        用平方差公式進(jìn)行因式法分解.

        難點(diǎn)

        因式分解化簡的過程

        自學(xué)過程設(shè)計(jì)教學(xué)過程設(shè)計(jì)

       看一看

       平方差公式:

        平方差公式的逆運(yùn)用:

        做一做:

       1.填空題.

        (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

        (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

        2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項(xiàng)式是()

        A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

        3.多項(xiàng)式-1+0.04a2分解因式的結(jié)果是()

        A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

        C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

        4.把下列各式分解因式:

        (1)4x2-25y2;(2)0.81m2-n2;

        (3)a3-9a;(4)8x3y3-2xy.

        5.把下列各式分解因式:

        (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

        6.用簡便方法計(jì)算:3492-2512.

        想一想

       你還有哪些地方不是很懂?請(qǐng)寫出來。

        ____________________________________________________________________________________

        Xkb1.com預(yù)習(xí)展示一:

        1、下列多項(xiàng)式能否用平方差公式分解因式?

        說說你的理由。

        4x2+y2

        4x2-(-y)2

        -4x2-y2-4x2+y2

        a2-4a2+3

        2.把下列各式分解因式:

        (1)16-a2

        (2)0.01s2-t2

        (4)-1+9x2

        (5)(a-b)2-(c-b)2

        (6)-(x+y)2+(x-2y)2

        應(yīng)用探究:

       1、分解因式

        4x3y-9xy3

        變式:把下列各式分解因式

       、賦4-81y4

       、2a-8a

        2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學(xué)們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w

        3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.

        例如用多項(xiàng)式x4-y4因式分解的結(jié)果來設(shè)置密碼,當(dāng)取x=9,y=9時(shí),可得一個(gè)六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?

        小明選用多項(xiàng)式4x3-xy2,取x=10,y=10時(shí)。用上述方法產(chǎn)生的`密碼是什么?(寫出一個(gè)即可)

        拓展提高:

      若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請(qǐng)說明理由.

        教后反思考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的。

      因式分解教案 篇8

        第1課時(shí)

        1.使學(xué)生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.

        2.讓學(xué)生會(huì)確定多項(xiàng)式中各項(xiàng)的公因式,會(huì)用提公因式法進(jìn)行因式分解.

        自主探索,合作交流.

        1.通過與因數(shù)分解的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點(diǎn),體驗(yàn)數(shù)學(xué)的類比思想.

        2.通過對(duì)因式分解的教學(xué),培養(yǎng)學(xué)生“換元”的意識(shí).

        【重點(diǎn)】 因式分解的概念及提公因式法的應(yīng)用.

        【難點(diǎn)】 正確找出多項(xiàng)式中各項(xiàng)的公因式.

        【教師準(zhǔn)備】 多媒體.

        【學(xué)生準(zhǔn)備】 復(fù)習(xí)有關(guān)乘法分配律的知識(shí).

        導(dǎo)入一:

        【問題】 一塊場地由三個(gè)長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.

        解法1:這塊場地的面積=×+×+×=++==2.

        解法2:這塊場地的面積=×+×+×=×=×4=2.

        從上面的解答過程看,解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡單一些.這個(gè)事實(shí)說明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是將多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.

        [設(shè)計(jì)意圖] 讓學(xué)生通過利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).

        導(dǎo)入二:

        【問題】 計(jì)算×15-×9+×2采用什么方法?依據(jù)是什么?

        解法1:原式=-+==5.

        解法2:原式=×(15-9+2)=×8=5.

        解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡單一些.這個(gè)事實(shí)說明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是把多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.

        [設(shè)計(jì)意圖] 讓學(xué)生通過利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).

        一、提公因式法分解因式的概念

        思路一

        [過渡語] 上一節(jié)我們學(xué)習(xí)了什么是因式分解,那么怎樣進(jìn)行因式分解呢?我們來看下面的問題.

        如果一塊場地由三個(gè)長方形組成,這三個(gè)長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號(hào)來連接,即:a+b+c=(a+b+c).

        大家注意觀察這個(gè)等式,等式左邊的每一項(xiàng)有什么特點(diǎn)?各項(xiàng)之間有什么聯(lián)系?等式右邊的項(xiàng)有什么特點(diǎn)?

        分析:等式左邊的每一項(xiàng)都含有因式,等式右邊是與多項(xiàng)式a+b+c的乘積,從左邊到右邊的過程是因式分解.

        由于是左邊多項(xiàng)式a+b+c中的各項(xiàng)a,b,c都含有的一個(gè)相同因式,因此叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.

        由上式可知,把多項(xiàng)式a+b+c寫成與多項(xiàng)式a+b+c的乘積的形式,相當(dāng)于把公因式從各項(xiàng)中提出來,作為多項(xiàng)式a+b+c的一個(gè)因式,把從多項(xiàng)式a+b+c的各項(xiàng)中提出后形成的多項(xiàng)式a+b+c,作為多項(xiàng)式a+b+c的另一個(gè)因式.

        總結(jié):如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.

        [設(shè)計(jì)意圖] 通過實(shí)例的教學(xué),使學(xué)生明白什么是公因式和用提公因式法分解因式.

        思路二

        [過渡語] 同學(xué)們,我們來看下面的問題,看看同學(xué)們誰先做出來.

        多項(xiàng)式 ab+ac中,各項(xiàng)都含有相同的因式嗎?多項(xiàng)式 3x2+x呢?多項(xiàng)式b2+nb-b呢?

        結(jié)論:多項(xiàng)式中各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.

        多項(xiàng)式2x2+6x3中各項(xiàng)的公因式是什么?你能嘗試將多項(xiàng)式2x2+6x3因式分解嗎?

        結(jié)論:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.

        [設(shè)計(jì)意圖] 從讓學(xué)生找出幾個(gè)簡單多項(xiàng)式的公因式,再到讓學(xué)生嘗試將多項(xiàng)式分解因式,使學(xué)生理解公因式以及提公因式法分解因式的概念.

        二、例題講解

        [過渡語] 剛剛我們學(xué)習(xí)了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進(jìn)行因式分解吧.

        (教材例1)把下列各式因式分解:

        (1)3x+x3;

        (2)7x3-21x2;

        (3)8a3b2-12ab3c+ab;

        (4)-24x3+12x2-28x.

        〔解析〕 首先要找出各項(xiàng)的公因式,然后再提取出來.要避免提取公因式后,各項(xiàng)中還有公因式,即“沒提徹底”的現(xiàn)象.

        解:(1)3x+x3=x3+xx2=x(3+x2).

        (2)7x3-21x2=7x2x-7x23=7x2(x-3).

        (3)8a3b2-12ab3c+ab

        =ab8a2b-ab12b2c+ab1

        =ab(8a2b-12b2c+1).

        (4)-24x3+12x2-28x

        =-(24x3-12x2+28x)

        =-(4x6x2-4x3x+4x7)

        =-4x(6x2-3x+7).

        【學(xué)生活動(dòng)】 通過剛才的練習(xí),大家互相交流,總結(jié)出提取公因式的一般步驟和容易出現(xiàn)的問題.

        總結(jié):提取公因式的步驟:(1)找公因式;(2)提公因式.

        容易出現(xiàn)的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項(xiàng)提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號(hào)時(shí),沒有把后面的因式中的每一項(xiàng)都變號(hào).

        教師提醒:

        (1)各項(xiàng)都含有的字母的最低次冪的積是公因式的字母部分;

        (2)因式分解后括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同;

        (3)若多項(xiàng)式的首項(xiàng)為“-”,則先提取“-”號(hào),然后再提取其他公因式;

        (4)將分解因式后的式子再進(jìn)行整式的乘法運(yùn)算,其積應(yīng)與原式相等.

        [設(shè)計(jì)意圖] 經(jīng)歷用提公因式法進(jìn)行因式分解的過程,在教師的啟發(fā)與指導(dǎo)下,學(xué)生自己歸納出提公因式的步驟及提取公因式時(shí)容易出現(xiàn)的類似問題,為提取公因式積累經(jīng)驗(yàn).

        1.提公因式法分解因式的一般形式,如:

        a+b+c=(a+b+c).

        這里的字母a,b,c,可以是一個(gè)系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項(xiàng)式.

        2.提公因式法分解因式的`關(guān)鍵在于發(fā)現(xiàn)多項(xiàng)式的公因式.

        3.找公因式的一般步驟:

        (1)若各項(xiàng)系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);

        (2)取各項(xiàng)中相同的字母,字母的指數(shù)取最低的;

        (3)所有這些因式的乘積即為公因式.

        1.多項(xiàng)式-6ab2+18a2b2-12a3b2c的公因式是( )

        A.-6ab2cB.-ab2

        C.-6ab2D.-6a3b2c

        解析:根據(jù)確定多項(xiàng)式各項(xiàng)的公因式的方法,可知公因式為-6ab2.故選C.

        2.下列用提公因式法分解因式正確的是( )

        A.12abc-9a2b2=3abc(4-3ab)

        B.3x2-3x+6=3(x2-x+2)

        C.-a2+ab-ac=-a(a-b+c)

        D.x2+5x-=(x2+5x)

        解析:A.12abc-9a2b2=3ab(4c-3ab),錯(cuò)誤;B.3x2-3x+6=3(x2-x+2),錯(cuò)誤;D.x2+5x-=(x2+5x-1),錯(cuò)誤.故選C.

        3.下列多項(xiàng)式中應(yīng)提取的公因式為5a2b的是( )

        A.15a2b-20a2b2

        B.30a2b3-15ab4-10a3b2

        C.10a2b-20a2b3+50a4b

        D.5a2b4-10a3b3+15a4b2

        解析:B.應(yīng)提取公因式5ab2,錯(cuò)誤;C.應(yīng)提取公因式10a2b,錯(cuò)誤;D.應(yīng)提取公因式5a2b2,錯(cuò)誤.故選A.

        4.填空.

        (1)5a3+4a2b-12abc=a( );

        (2)多項(xiàng)式32p2q3-8pq4的公因式是 ;

        (3)3a2-6ab+a= (3a-6b+1);

        (4)因式分解:+n= ;

        (5)-15a2+5a= (3a-1);

        (6)計(jì)算:21×3.14-31×3.14= .

        答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

        5.用提公因式法分解因式.

        (1)8ab2-16a3b3;

        (2)-15x-5x2;

        (3)a3b3+a2b2-ab;

        (4)-3a3-6a2+12a.

        解:(1)8ab2(1-2a2b).

        (2)-5x(3+x).

        (3)ab(a2b2+ab-1).

        (4)-3a(a2+2a-4).

        第1課時(shí)

        一、教材作業(yè)

        【必做題】

        教材第96頁隨堂練習(xí).

        【選做題】

        教材第96頁習(xí)題4.2.

        二、課后作業(yè)

        【基礎(chǔ)鞏固】

        1.把多項(xiàng)式4a2b+10ab2分解因式時(shí),應(yīng)提取的公因式是 .

        2.(20xx淮安中考)因式分解:x2-3x= .

        3.分解因式:12x3-18x22+24x3=6x .

        【能力提升】

        4.把下列各式因式分解.

        (1)3x2-6x;

        (2)5x23-25x32;

        (3)-43+162-26;

        (4)15x32+5x2-20x23.

        【拓展探究】

        5.分解因式:an+an+2+a2n.

        6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請(qǐng)你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來.

        【答案與解析】

        1.2ab

        2.x(x-3)

        3.(2x2-3x+42)

        4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

        5.解:原式=an1+ana2+anan=an(1+a2+an).

        6.解:由題中給出的幾個(gè)式子可得出規(guī)律:n2+n=n(n+1).

        本節(jié)運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過程中,使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由提公因數(shù)到提公因式,由整式乘法的逆運(yùn)算到提公因式法的概念,都是利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解.

        在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問.

        由于因式分解的主要目的是對(duì)多項(xiàng)式進(jìn)行恒等變形,它的作用更多的是應(yīng)用于多項(xiàng)式的計(jì)算和化簡,比如在以后將要學(xué)習(xí)的分式運(yùn)算、解分式方程等中都要用到因式分解的知識(shí),因此應(yīng)該注重因式分解的概念和方法的教學(xué).

        隨堂練習(xí)(教材第96頁)

        解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

        習(xí)題4.2(教材第96頁)

        1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

        2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

        3.解:(1)不正確,因?yàn)樘崛〉墓蚴讲粚?duì),應(yīng)為n(2n--1). (2)不正確,因?yàn)樘崛」蚴?b后,第三項(xiàng)沒有變號(hào),應(yīng)為-b(ab-2a+3). (3)正確. (4)不正確,因?yàn)樽詈蟮慕Y(jié)果不是乘積的形式,應(yīng)為(a-2)(a+1).

        提公因式法是本章的第2小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷從乘法分配律的逆運(yùn)算到提公因式的過程,讓學(xué)生體會(huì)數(shù)學(xué)中的一種主要思想——類比思想.運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過程中,可以使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由整式乘法的逆運(yùn)算到提公因式法的概念,就利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解,進(jìn)而使學(xué)生進(jìn)一步理解因式分解與整式乘法運(yùn)算之間的互逆關(guān)系.

        已知方程組求7(x-3)2-2(3-x)3的值.

        〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個(gè)因式,再根據(jù)方程組整體代入,使計(jì)算簡便.

        解:7(x-3)2-2(3-x)3

        =(x-3)2[7+2(x-3)]

        =(x-3)2(7+2x-6)

        =(x-3)2(2x+).

        由方程組可得原式=12×6=6.

      因式分解教案 篇9

        學(xué)習(xí)目標(biāo)

        1、了解因式分解的意義以及它與正式乘法的關(guān)系。

        2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。

        學(xué)習(xí)重點(diǎn):能用提公因式法分解因式。

        學(xué)習(xí)難點(diǎn):確定因式的公因式。

        學(xué)習(xí)關(guān)鍵,在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來提公因式。

        學(xué)習(xí)過程

        一.知識(shí)回顧

        1、計(jì)算

        (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

        (3)、m(a+b)(4)、2ab(x-2y+1)

        二、自主學(xué)習(xí)

        1、閱讀課文P72-73的內(nèi)容,并回答問題:

        (1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的__________的形式叫做____________,也叫做把這個(gè)多項(xiàng)式__________。

        (2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得

        ma+mb+mc=m(a+b+c)

        我們來分析一下多項(xiàng)式ma+mb+mc的特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的_________。如果把這個(gè)_________提到括號(hào)外面,這樣

        ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

        2、練一練。P73練習(xí)第1題。

        三、合作探究

        1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、

        2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

        3、下列是由左到右的.變形,哪些屬于整式乘法,哪些屬于因式分解?

        (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

        (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

        4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

        (1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

        例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

        (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

        四、展示提升

        1、填空(1)a2b-ab2=ab(________)

        (2)-4a2b+8ab-4b分解因式為__________________

        (3)分解因式4x2+12x3+4x=__________________

        (4)__________________=-2a(a-2b+3c)

        2、P73練習(xí)第2題和第3題

        五、達(dá)標(biāo)測試。

        1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

        (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

        (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

        (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

        2.課本P77習(xí)題8.5第1題

        學(xué)習(xí)反思

        一、知識(shí)點(diǎn)

        二、易錯(cuò)題

        三、你的困惑

      因式分解教案 篇10

        教學(xué)設(shè)計(jì)思想:

        本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的'目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

        教學(xué)目標(biāo)

        知識(shí)與技能:

        會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;

        會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

        能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

        提高全面地觀察問題、分析問題和逆向思維的能力。

        過程與方法:

        經(jīng)歷用公式法分解因式的探索過程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。

        情感態(tài)度價(jià)值觀:

        通過學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。

        教學(xué)重點(diǎn)和難點(diǎn)

        重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。

        難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式

        關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。

      【因式分解教案】相關(guān)文章:

      因式分解教案04-02

      人教版因式分解教案01-04

      小學(xué)數(shù)學(xué)因式分解教案03-19

      因式分解教案模板7篇03-08

      因式分解優(yōu)秀教案(精選14篇)02-20

      【必備】因式分解教案10篇10-08

      因式分解教案集合7篇04-03

      因式分解教案合集十篇04-06

      因式分解教案模板合集8篇04-03

      因式分解教案范文合集5篇04-06