亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 因式分解教案

      時間:2022-03-03 09:21:55 教案 投訴 投稿

      【熱門】因式分解教案3篇

        作為一位杰出的教職工,可能需要進行教案編寫工作,教案是教學活動的依據,有著重要的地位。那么什么樣的教案才是好的呢?以下是小編精心整理的因式分解教案3篇,僅供參考,希望能夠幫助到大家。

      【熱門】因式分解教案3篇

      因式分解教案 篇1

        一、教材分析

        1、教材的地位與作用

        “整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據原有的知識基礎,或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內容的探索、認識與體驗,完全有利于學生形成合理的知識結構,提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結果的形式,選擇正確的分解方法。

        因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的.逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

        2、教學目標

       。1)會推導乘法公式

       。2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。

        (3)會用提公因式法、公式法進行因式分解。

       。4)了解因式分解的一般步驟。

        (5)在因式分解中,經歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

        3、重點、難點和關鍵

        重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。

        難點:正確運用乘法公式;正確分解因式。

        關鍵:正確理解乘法公式和因式分解的意義。

        二、本單元教學的方法和策略:

        1.注重知識形成的探索過程,讓學生在探索過程中領悟知識,在領悟過程中建構體系,從而更好地實現(xiàn)知識體系的更新和知識的正向遷移.

        2.知識內容的呈現(xiàn)方式力求與學生已有的知識結構相聯(lián)系,同時兼顧學生的思維水平和心理特征.

        3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經驗,減輕不必要的記憶負擔.

        4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數(shù)學的應用價值,逐步養(yǎng)成談數(shù)學、想數(shù)學、做數(shù)學的良好習慣.

        三、課時安排:

        2.1平方差公式 1課時

        2.2完全平方公式 2課時

        2.3用提公因式法進行因式分解 1課時

        2.4用公式法進行因式分解 2課時

      因式分解教案 篇2

        教學目標

        1、進一步鞏固因式分解的概念;

        2、鞏固因式分解常用的三種方法

        3、選擇恰當?shù)姆椒ㄟM行因式分解

        4、應用因式分解來解決一些實際問題

        5、體驗應用知識解決問題的樂趣

        教學重點

        靈活運用因式分解解決問題

        教學難點:

        靈活運用恰當?shù)囊蚴椒纸獾姆椒,拓展練?、3

        教學過程

        一、創(chuàng)設情景:若a=101,b=99,求a2-b2的值

        利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

        二、知識回顧

        1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

        判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)

        (1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

        (3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

        (5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

        (7).2πR+2πr=2π(R+r)因式分解

        2、.規(guī)律總結(教師講解):分解因式與整式乘法是互逆過程.

        分解因式要注意以下幾點:(1).分解的對象必須是多項式.

        (2).分解的'結果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.

        3、因式分解的方法

        提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

        公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

        4、強化訓練

        教學引入

        師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

        動畫演示:

        場景一:正方形折疊演示

        師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

        [學生活動:各自測量。]

        鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。

        講授新課

        找一兩個學生表述其結論,表述是要注意糾正其語言的規(guī)范性。

        動畫演示:

        場景二:正方形的性質

        師:這些性質里那些是矩形的性質?

        [學生活動:尋找矩形性質。]

        動畫演示:

        場景三:矩形的性質

        師:同樣在這些性質里尋找屬于菱形的性質。

        [學生活動;尋找菱形性質。]

        動畫演示:

        場景四:菱形的性質

        師:這說明正方形具有矩形和菱形的全部性質。

        及時提出問題,引導學生進行思考。

        師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

        [學生活動:積極思考,有同學做躍躍欲試狀。]

        師:請同學們回想矩形與菱形的定義,可以根據矩形與菱形的定義類似的給出正方形的定義。

        學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:

        “有一組鄰邊相等的矩形叫做正方形!

        “有一個角是直角的菱形叫做正方形!

        “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

        [學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

        師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。

        試一試把下列各式因式分解:

        (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

        (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

        三、例題講解

        例1、分解因式

        (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

        (3)(4)y2+y+

        例2、分解因式

        1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

        4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

        例3、分解因式

        1、72-2(13x-7)22、8a2b2-2a4b-8b3

        三、知識應用

        1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

        3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

        4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

        四、拓展應用

        1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

        2、20042+20xx被20xx整除嗎?

        3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

        五、課堂小結:今天你對因式分解又有哪些新的認識?

      因式分解教案 篇3

        知識點:

        因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

        教學目標:

        理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

        考查重難點與常見題型:

        考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

        教學過程:

        因式分解知識點

        多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

       。1)提公因式法

        如多項式

        其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

       。2)運用公式法,即用

        寫出結果。

        (3)十字相乘法

        對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的.a,b,如有,則對于一般的二次三項式尋找滿足

        a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

        (4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

        分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

        (5)求根公式法:如果有兩個根X1,X2,那么

        2、教學實例:學案示例

        3、課堂練習:學案作業(yè)

        4、課堂:

        5、板書:

        6、課堂作業(yè):學案作業(yè)

        7、教學反思:

      【因式分解教案】相關文章:

      因式分解教案04-02

      因式分解復習教案08-25

      人教版因式分解教案01-04

      精選因式分解教案3篇03-13

      實用的因式分解教案四篇08-02

      因式分解教案模板8篇01-31

      【精華】因式分解教案三篇01-26

      因式分解優(yōu)秀教案(精選14篇)02-20

      因式分解教案匯編5篇02-26

      【必備】因式分解教案4篇02-20