亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高二數(shù)學(xué)教學(xué)設(shè)計(jì)

      時(shí)間:2023-03-26 16:46:59 教學(xué)資源 投訴 投稿

      高二數(shù)學(xué)教學(xué)設(shè)計(jì)

        作為一名無私奉獻(xiàn)的老師,常常要根據(jù)教學(xué)需要編寫教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以促進(jìn)我們快速成長,使教學(xué)工作更加科學(xué)化。那么大家知道規(guī)范的教學(xué)設(shè)計(jì)是怎么寫的嗎?下面是小編為大家整理的高二數(shù)學(xué)教學(xué)設(shè)計(jì),希望對大家有所幫助。

      高二數(shù)學(xué)教學(xué)設(shè)計(jì)

      高二數(shù)學(xué)教學(xué)設(shè)計(jì)1

        一、教材分析

        教材的地位和作用

        期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識做鋪墊。同時(shí),它在市場預(yù)測,經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險(xiǎn)與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響。

        教學(xué)重點(diǎn)與難點(diǎn)

        重點(diǎn):離散型隨機(jī)變量期望的概念及其實(shí)際含義。

        難點(diǎn):離散型隨機(jī)變量期望的實(shí)際應(yīng)用。

        [理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機(jī)變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點(diǎn)。此外,學(xué)生初次應(yīng)用概念解決實(shí)際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點(diǎn)。

        二、教學(xué)目標(biāo)

        [知識與技能目標(biāo)]

        通過實(shí)例,讓學(xué)生理解離散型隨機(jī)變量期望的概念,了解其實(shí)際含義。

        會(huì)計(jì)算簡單的離散型隨機(jī)變量的期望,并解決一些實(shí)際問題。

        [過程與方法目標(biāo)]

        經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進(jìn)一步體會(huì)從特殊到一般的.思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。

        通過實(shí)際應(yīng)用,培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識。

        [情感與態(tài)度目標(biāo)]

        通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實(shí)現(xiàn)自我的價(jià)值。

        三、教法選擇

        引導(dǎo)發(fā)現(xiàn)法

        四、學(xué)法指導(dǎo)

        “授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會(huì)怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

      高二數(shù)學(xué)教學(xué)設(shè)計(jì)2

        (1)知識目標(biāo):

        1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;

        2.會(huì)由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

        (2)能力目標(biāo):

        1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;

        2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;

        3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識.

        (3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識、合作交流的意識,在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

        2.教學(xué)重點(diǎn).難點(diǎn)

        (1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

        (2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

        當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題.

        3.教學(xué)過程

        (一)創(chuàng)設(shè)情境(啟迪思維)

        問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

        [引導(dǎo)] 畫圖建系

        [學(xué)生活動(dòng)]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

        解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑AB所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

        將x=2.7代入,得 .

        即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。

        (二)深入探究(獲得新知)

        問題二:1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

        答:x2 y2=r2

        2.如果圓心在 ,半徑為 時(shí)又如何呢?

        [學(xué)生活動(dòng)] 探究圓的方程。

        [教師預(yù)設(shè)] 方法一:坐標(biāo)法

        如圖,設(shè)M(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}

        由兩點(diǎn)間的距離公式,點(diǎn)M適合的條件可表示為 ①

        把①式兩邊平方,得(x―a)2 (y―b)2=r2

        方法二:圖形變換法

        方法三:向量平移法

        (三)應(yīng)用舉例(鞏固提高)

        I.直接應(yīng)用(內(nèi)化新知)

        問題三:1.寫出下列各圓的方程(課本P77練習(xí)1)

        (1)圓心在原點(diǎn),半徑為3;

        (2)圓心在 ,半徑為 ;

        (3)經(jīng)過點(diǎn) ,圓心在點(diǎn) .

        2.根據(jù)圓的方程寫出圓心和半徑

        (1) ; (2) .

        II.靈活應(yīng)用(提升能力)

        問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

        [教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.

        2.已知圓的方程為 ,求過圓上一點(diǎn) 的切線方程.

        [學(xué)生活動(dòng)]探究方法

        [教師預(yù)設(shè)]

        方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

        方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

        方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

        方法四:軌跡法(利用向量垂直列關(guān)系式)

        3.你能歸納出具有一般性的結(jié)論嗎?

        已知圓的方程是 ,經(jīng)過圓上一點(diǎn) 的切線的方程是: .

        III.實(shí)際應(yīng)用(回歸自然)

        問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長度(精確到0.01m).

        [多媒體課件演示創(chuàng)設(shè)實(shí)際問題情境]

        (四)反饋訓(xùn)練(形成方法)

        問題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.

        2.已知點(diǎn)A(-4,-5),B(6,-1),求以AB為直徑的圓的方程.

        3.求圓x2 y2=13過點(diǎn)(-2,3)的切線方程.

        4.已知圓的方程為 ,求過點(diǎn) 的切線方程.

        (五)小結(jié)反思(拓展引申)

        1.課堂小結(jié):

        (1)圓心為C(a,b),半徑為r 的圓的標(biāo)準(zhǔn)方程為:

        當(dāng)圓心在原點(diǎn)時(shí),圓的標(biāo)準(zhǔn)方程為:

        (2) 求圓的方程的方法:①找出圓心和半徑;②待定系數(shù)法

        (3) 已知圓的方程是 ,經(jīng)過圓上一點(diǎn) 的切線的方程是:

        (4) 求解應(yīng)用問題的一般方法

        2.分層作業(yè):(A)鞏固型作業(yè):課本P81-82:(習(xí)題7.6)1.2.4

        (B)思維拓展型作業(yè):

        試推導(dǎo)過圓 上一點(diǎn) 的切線方程.

        3.激發(fā)新疑:

        問題七:1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

        2.方程: 的曲線是什么圖形?

        教學(xué)設(shè)計(jì)說明

        圓是學(xué)生比較熟悉的曲線,初中平面幾何對圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點(diǎn)確定為用解析法研究圓的標(biāo)準(zhǔn)方程及其簡單應(yīng)用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實(shí)際問題引導(dǎo)學(xué)生探究獲得圓的標(biāo)準(zhǔn)方程,然后,利用圓的標(biāo)準(zhǔn)方程由淺入深的解決問題,并通過圓的方程在實(shí)際問題中的`應(yīng)用,增強(qiáng)學(xué)生用數(shù)學(xué)的意識。另外,為了培養(yǎng)學(xué)生的理性思維,我分別在引例和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,能力與知識的形成相伴而行,這樣的設(shè)計(jì)不但突出了重點(diǎn),更使難點(diǎn)的突破水到渠成.

        本節(jié)課的設(shè)計(jì)了五個(gè)環(huán)節(jié),以問題為紐帶,以探究活動(dòng)為載體,使學(xué)生在問題的指引下、教師的指導(dǎo)下把探究活動(dòng)層層展開、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想。應(yīng)用啟發(fā)式的教學(xué)方法把學(xué)生學(xué)習(xí)知識的過程轉(zhuǎn)變?yōu)閷W(xué)生觀察問題、發(fā)現(xiàn)問題、分析問題、解決問題的過程,在解決問題的同時(shí)鍛煉了思維.提高了能力。

      高二數(shù)學(xué)教學(xué)設(shè)計(jì)3

        本人這個(gè)學(xué)期擔(dān)任高二(9)(10)班的數(shù)學(xué)科的教學(xué)工作,兩班人數(shù)為132名學(xué)生,是理科普通班,學(xué)生基礎(chǔ)比較薄弱,學(xué)習(xí)態(tài)度一般,個(gè)別比較積極。

        一、指導(dǎo)思想:

        使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。

        1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

        2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

        3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。

        4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

        5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

        6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

        二、 教材特點(diǎn):

        我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(A版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):

        1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

        2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識,孕育創(chuàng)新精神。

        3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

        4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識。

        三.提高教學(xué)質(zhì)量的主要措施:

        1、認(rèn)真鉆研教材和新課程標(biāo)準(zhǔn)。

        2、認(rèn)真?zhèn)湔n,精心設(shè)計(jì)教案。

        3、轉(zhuǎn)變傳統(tǒng)的教育教學(xué)觀念,優(yōu)化教學(xué)方法。

        4、采取直觀教學(xué),注意理論聯(lián)系實(shí)際。

        四、 教法分析:

        1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的`思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

        2.通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

        3.在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

        五、教學(xué)要求:

        1、了解合情推理的含義,能利用歸納和類比等進(jìn)行簡單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用;了解演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡單推理;了解合情推理和演繹推理之間的聯(lián)系和差異。

        2、了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點(diǎn);了解間接證明的一種基本方法──反證法;了解反證法的思考過程、特點(diǎn)。

        3、(理)了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題。

        4、理解復(fù)數(shù)相等的充要條件;了解復(fù)數(shù)的代數(shù)表示法及其幾何意義;會(huì)進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算;了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義。

        5、(理)理解分類加法計(jì)數(shù)原理和分類乘法計(jì)數(shù)原理;會(huì)用分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理分析和解決一些簡單的實(shí)際問題;理解排列、組合的概念;能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,能解決簡單的實(shí)際問題;能用計(jì)數(shù)原理證明二項(xiàng)式定理,會(huì)用二項(xiàng)式定理解決與二項(xiàng)展開式有關(guān)的簡單問題。

        6、(理)理解取有限個(gè)值的離散型隨機(jī)變量及其分布列的概念,了解分布列對于刻畫隨機(jī)現(xiàn)象的重要性;理解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡單的應(yīng)用;了解條件概率和兩個(gè)事件相互獨(dú)立的概念,理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解決一些簡單的實(shí)際問題;理解取有限個(gè)值的離散型隨機(jī)變量均值、方差的概念,能計(jì)算簡單離散型隨機(jī)變量的均值、方差,并能解決一些實(shí)際問題;利用實(shí)際問題的直方圖,了解正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義。

        7、了解下列一些常見的統(tǒng)計(jì)方法,并能應(yīng)用這些方法解決一些實(shí)際問題:了解獨(dú)立性檢驗(yàn)(只要求22列聯(lián)表)的基本思想、方法及其簡單應(yīng)用;了解假設(shè)檢驗(yàn)的基本思想、方法及其簡單應(yīng)用;了解聚類分析的基本思想、方法及其簡單應(yīng)用;了解回歸的基本思想、方法及其簡單應(yīng)用。

        9、了解程序框圖;了解工序流程圖(即統(tǒng)籌圖);能繪制簡單實(shí)際問題的流程圖,了解流程圖在解決實(shí)際問題中的作用;了解結(jié)構(gòu)圖;會(huì)運(yùn)用結(jié)構(gòu)圖梳理已學(xué)過的知識、整理收集到的資料信息。

        8、所有考生都學(xué)習(xí)選修4-4 坐標(biāo)系與參數(shù)方程,理科考生還需學(xué)習(xí)選修4-5不等式選講這部分專題內(nèi)容。

        六、教學(xué)措施:

        1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

        2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

        3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

        4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

        5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

        6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

        七、提高自身素質(zhì)的主要措施

        1、認(rèn)真學(xué)習(xí)專業(yè)知識,不斷獲取新知識、新信息,多進(jìn)行總結(jié)與反思。

        2、積極參加教研課改活動(dòng),多聽同行老師的課,經(jīng)常和經(jīng)驗(yàn)豐富的老師交流心得。

      高二數(shù)學(xué)教學(xué)設(shè)計(jì)4

        一、教學(xué)背景分析

        1.教學(xué)內(nèi)容分析

        本節(jié)課是高中數(shù)學(xué)(北師大版必修5)第一章第3節(jié)第二課時(shí),是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù),與函數(shù)等知識有著密切的聯(lián)系,也為以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等做好鋪墊。而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng),如在“分期付款”等實(shí)際問題中也經(jīng)常涉及到。本節(jié)以數(shù)學(xué)文化背境引入課題有助于提升學(xué)生的創(chuàng)新思維和探索精神,是提高數(shù)學(xué)文化素養(yǎng)和培養(yǎng)學(xué)生應(yīng)用意識的良好載體。

        2.學(xué)情分析

        從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是,本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò)。教學(xué)對象是高二理科班的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不完全。

        二.教學(xué)目標(biāo)

        依據(jù)新課程標(biāo)準(zhǔn)及教材內(nèi)容,結(jié)合學(xué)生的認(rèn)知發(fā)展水平和心理特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)如下:

        1.知識與技能目標(biāo): 理解等比數(shù)列前n項(xiàng)和公式推導(dǎo)方法;掌握等比數(shù)列前n項(xiàng)和公式并能運(yùn)用公式解決一些簡單問題。

        2.過程與方法目標(biāo):感悟并理解公式的推導(dǎo)過程,感受公式探求過程所蘊(yùn)涵的從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì),初步提高學(xué)生的建模意識和探究、分析與解決問題的能力。

        3.情感與態(tài)度目標(biāo):通過經(jīng)歷對公式的探索過程,對學(xué)生進(jìn)行思維嚴(yán)謹(jǐn)性的訓(xùn)練,激發(fā)學(xué)生的求知欲,鼓勵(lì)學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗(yàn),感受數(shù)學(xué)的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美和數(shù)學(xué)的嚴(yán)謹(jǐn)美。

        三.重點(diǎn),難點(diǎn)

        教學(xué)重點(diǎn):等比數(shù)列前“等比數(shù)列的前n項(xiàng)和”項(xiàng)和公式的推導(dǎo)及其簡單應(yīng)用。

        教學(xué)難點(diǎn):公式的推導(dǎo)思想方法及公式應(yīng)用中q與1的`關(guān)系。

        四.教學(xué)方法

        啟發(fā)引導(dǎo),探索發(fā)現(xiàn),類比。

        五. 教學(xué)過程

       。ㄒ唬┙柚鷶(shù)學(xué)文化背境提出問題

        在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當(dāng)時(shí)的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚。為什么呢?

        【設(shè)計(jì)意圖】:設(shè)計(jì)這個(gè)數(shù)學(xué)文化背境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性。故事內(nèi)容也緊扣本節(jié)課的主題與重點(diǎn)。

        問題1:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?

        引導(dǎo)學(xué)生寫出麥粒總數(shù)“等比數(shù)列的前n項(xiàng)和”

       。ǘ⿴熒(dòng),探究問題

        問題2:“等比數(shù)列的前n項(xiàng)和”

        有些學(xué)生會(huì)說用計(jì)算器來求(老師當(dāng)然肯定這種做法,但學(xué)生很快發(fā)現(xiàn)比較難求。)

        問題3:同學(xué)們,我們來分析一下這個(gè)和式有什么特征?

       。▽W(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

        問題4:如果我們把(1)式每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),那么我們?nèi)粼诖说仁絻蛇呁?,得到(2)式:

        “等比數(shù)列的前n項(xiàng)和”

        比較(1)(2)兩式,你有什么發(fā)現(xiàn)?(學(xué)生經(jīng)過比較發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng))

        問題5:將兩式相減,相同的項(xiàng)就消去了,得到什么呢?。(學(xué)生會(huì)發(fā)現(xiàn):“等比數(shù)列的前n項(xiàng)和”

        【設(shè)計(jì)意圖】:這五個(gè)問題層層深入,剖析了錯(cuò)位相減法中減的妙用,使學(xué)生容易接受為什么要錯(cuò)位相減,經(jīng)過繁難的計(jì)算之后,突然發(fā)現(xiàn)上述解法,也讓學(xué)生感受到這種方法的神奇。

        問題6:老師指出這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過程,反思為什么(1)式兩邊要同乘以2呢?

        【設(shè)計(jì)意圖】:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,讓學(xué)生對錯(cuò)位相減法有一個(gè)深刻的認(rèn)識,也為探究等比數(shù)列求和公式的推導(dǎo)做好鋪墊。

       。ㄈ╊惐嚷(lián)想,構(gòu)建新知

        這時(shí)我再順勢引導(dǎo)學(xué)生將結(jié)論一般化。

        問題7:如何求等比數(shù)列“等比數(shù)列的前n項(xiàng)和”的前“等比數(shù)列的前n項(xiàng)和”項(xiàng)和“等比數(shù)列的前n項(xiàng)和”:

        即:“等比數(shù)列的前n項(xiàng)和”

        (學(xué)生相互合作,討論交流,老師巡視課堂,并請學(xué)生上臺板演。)

        注:學(xué)生已有上面問題的處理經(jīng)驗(yàn),肯定有不少學(xué)生會(huì)想到“錯(cuò)位相減法”,教師可放手讓學(xué)生探究。

        將“等比數(shù)列的前n項(xiàng)和”兩邊同時(shí)乘以公比“等比數(shù)列的前n項(xiàng)和”后會(huì)得到“等比數(shù)列的前n項(xiàng)和”,兩個(gè)等式相減后,哪些項(xiàng)被消去,還剩下哪些項(xiàng),剩下項(xiàng)的符號有沒有改變?這些都是用錯(cuò)位相減法求等比數(shù)列前“等比數(shù)列的前n項(xiàng)和”項(xiàng)和的關(guān)鍵所在,讓學(xué)生先思考,再討論,最后師在突出強(qiáng)調(diào),加深印象。

        兩式作差得到“等比數(shù)列的前n項(xiàng)和”時(shí),肯定會(huì)有學(xué)生直接得到“等比數(shù)列的前n項(xiàng)和”,不忙揭露錯(cuò)誤,后面再反饋這個(gè)易錯(cuò)點(diǎn),從而掌握公式的本質(zhì)。

        【設(shè)計(jì)意圖】:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的成就感。增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。

        問題8:由 “等比數(shù)列的前n項(xiàng)和” 得 “等比數(shù)列的前n項(xiàng)和”對不對呢?這里的“等比數(shù)列的前n項(xiàng)和”能不能等于1呀?等比數(shù)列中的公比能不能為1?那么“等比數(shù)列的前n項(xiàng)和”時(shí)是什么數(shù)列?此時(shí)“等比數(shù)列的前n項(xiàng)和”?你能歸納出等比數(shù)列的前n項(xiàng)和公式嗎? (這里引導(dǎo)學(xué)生對“等比數(shù)列的前n項(xiàng)和” 進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)。)

        再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式“等比數(shù)列的前n項(xiàng)和” ,如何把“等比數(shù)列的前n項(xiàng)和” 用“等比數(shù)列的前n項(xiàng)和” 、“等比數(shù)列的前n項(xiàng)和” 、“等比數(shù)列的前n項(xiàng)和” 表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)

        公式:

        “等比數(shù)列的前n項(xiàng)和”

        注:公式的理解

        知三求二:n q a1 an Sn ;

        n的含義:項(xiàng)數(shù)(通項(xiàng)公式是qn-1);

        q的含義:公比(注意q=1,分類討論);

        錯(cuò)位相減法:乘公比(作用是構(gòu)造許多相同項(xiàng))后錯(cuò)開一項(xiàng)后再減。

        【設(shè)計(jì)意圖】:通過反問學(xué)生歸納,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動(dòng)認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。

       。ㄋ模┯懻摻涣鳎由焱卣

        問題9: 探究等比數(shù)列前n項(xiàng)和公式,還有其它方法嗎?

        “等比數(shù)列的前n項(xiàng)和”(學(xué)生討論交流,老師指導(dǎo)。依學(xué)生的認(rèn)知水平可能會(huì)有以下幾種方法)

       。1)錯(cuò)位相減法

        “等比數(shù)列的前n項(xiàng)和”(2)提出公比q

        “等比數(shù)列的前n項(xiàng)和”(3)累加法

        【設(shè)計(jì)意圖】:以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營造一個(gè)讓學(xué)生主動(dòng)觀察、思考、討論的氛圍. 這有非常重要的研究價(jià)值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進(jìn)作用.

        (五) 應(yīng)用公式,深化理解

        例1:在等比數(shù)列{ an }中,

        (1)已知a1=3,q=2,n=6,求Sn;

        (2)已知a1=8,q=1/2,an =1/2,求Sn;

        (3)已知a1=-1.5,a4=96,求q與S4;

        (4)已知a1=2,S3=26,求q與a3。

        【設(shè)計(jì)意圖】:初步應(yīng)用公式,理解等比數(shù)列的基本量也可“知三求二”,體會(huì)方程思想。

        例2:等比數(shù)列{ an }中,已知a3=3/2,S3=9/2,求a1與q。

        【設(shè)計(jì)意圖】:注意公式中的分類討論思想。

        例3:求數(shù)列{n+ }的前n項(xiàng)和。

        【設(shè)計(jì)意圖】:將未知問題轉(zhuǎn)化為已知問題,進(jìn)一步體會(huì)等比數(shù)列前n項(xiàng)和公式的應(yīng)用。

        練習(xí)1:求等比數(shù)列“等比數(shù)列的前n項(xiàng)和”前8項(xiàng)和;

        練習(xí)2:a3= ,S9= ,求a1和q;

        練習(xí)3:求數(shù)列{n+an}的前n項(xiàng)和。

       。ㄏ扔蓪W(xué)生獨(dú)立求解,然后抽學(xué)生板演,教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予適時(shí)的表揚(yáng)。)

        【設(shè)計(jì)意圖】:通過練習(xí),深化認(rèn)識,增加思維的梯度的同時(shí),提高學(xué)生的模式識別能力,滲透轉(zhuǎn)化思想.

        (六)總結(jié)歸納,加深理解

        問題10:這節(jié)課你有什么收獲?學(xué)到了哪些知識和方法?

        【設(shè)計(jì)意圖】:以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再從知識點(diǎn)及數(shù)學(xué)思想方法等方面總結(jié)。以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。

       。▽W(xué)生小結(jié)歸納,不足之處老師補(bǔ)充說明。)

        1.公式:等比數(shù)列前n項(xiàng)和

        當(dāng)q≠1時(shí),Sn= =

        當(dāng)q=1時(shí), Sn=na1

        2.方法:錯(cuò)位相減法(乘以公比)

        3.思想:分類討論(公式選擇)

        (七)故事結(jié)束,首尾呼應(yīng)

        最后我們回到故事中的問題,可以計(jì)算出國王獎(jiǎng)賞的小麥約為1.84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾了。

        【設(shè)計(jì)意圖】:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。

       。ò耍┱n后作業(yè),分層練習(xí)

       。1)閱讀本節(jié)內(nèi)容,預(yù)習(xí)下一節(jié)內(nèi)容;

       。2) 書面作業(yè):習(xí)題P30 8 .10;

        (3)拓展作業(yè):求和:“等比數(shù)列的前n項(xiàng)和”

        【設(shè)計(jì)意圖】:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。

      高二數(shù)學(xué)教學(xué)設(shè)計(jì)5

        一、教材分析

        1.從在教材中的地位與作用來看

        《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,從教材的編寫順序上來看,等比數(shù)列的前n項(xiàng)和是第一章“數(shù)列”第六節(jié)的內(nèi)容,它是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、與前面學(xué)習(xí)的函數(shù)等知識也有著密切的聯(lián)系。就知識的應(yīng)用價(jià)值上來看,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。就內(nèi)容的人文價(jià)值上來看,等比數(shù)列的前n項(xiàng)和公式的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生應(yīng)用意識和數(shù)學(xué)能力的良好載體。

        2.從學(xué)生認(rèn)知角度來看

        從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò)。

        3. 學(xué)情分析

        教學(xué)對象是剛進(jìn)入高二的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但對問題的分析缺乏深刻性和嚴(yán)謹(jǐn)性。

        4. 重點(diǎn)、難點(diǎn)

        教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.

        教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.

        公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。

        二、目標(biāo)分析

        1.知識與技能目標(biāo):理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項(xiàng)和公式并能運(yùn)用公式解決一些簡單問題。

        2.過程與方法目標(biāo):通過公式的推導(dǎo)過程,培養(yǎng)學(xué)生猜想、分析、綜合的'思維能力,提高學(xué)生的建模意識及探究問題、分析與解決問題的能力,體會(huì)公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。

        3.情感態(tài)度與價(jià)值觀:通過經(jīng)歷對公式的探索,激發(fā)學(xué)生的求知欲,鼓勵(lì)學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗(yàn),感受思維的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美、數(shù)學(xué)的嚴(yán)謹(jǐn)美。用數(shù)學(xué)的觀點(diǎn)看問題,一些所謂不可理解的事就可以給出合理的解釋,從而幫助我們用科學(xué)的態(tài)度認(rèn)識世界。

        三、教學(xué)方法與教學(xué)手段

        本節(jié)課屬于新授課型,主要利用計(jì)算機(jī)輔助教學(xué),

        采用啟發(fā)探究,合作學(xué)習(xí),自主學(xué)習(xí)等的教學(xué)模式.

        四、教學(xué)過程分析

        學(xué)生是認(rèn)知的主體,也是教學(xué)活動(dòng)的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我按照自主學(xué)習(xí)的教學(xué)模式來設(shè)計(jì)如下的教學(xué)過程,目的是在教學(xué)過程中促使學(xué)生自主學(xué)習(xí),培養(yǎng)自主學(xué)習(xí)的習(xí)慣和意識,形成自主學(xué)習(xí)的能力。

        1.創(chuàng)設(shè)情境,提出問題

        一個(gè)窮人到富人那里去借錢,原以為富人不愿意,哪知富人一口答應(yīng)了下來,但提出了如下條件:在30天中,富人第一天借給窮人1萬元,第二天借給窮人2萬元,以后每天所借的錢數(shù)都比上一天多1萬;但借錢第一天,窮人還1分錢,第二天還2分錢,以后每天所還的錢數(shù)都是上一天的兩倍,30天后互不相欠.窮人聽后覺得挺劃算,本想定下來,但又想到此富人是吝嗇出了名的,怕上當(dāng)受騙,所以很為難!闭?jiān)谧耐瑢W(xué)思考討論一下,窮人能否向富人借錢?

        啟發(fā)引導(dǎo)學(xué)生數(shù)學(xué)地觀察問題,構(gòu)建數(shù)學(xué)模型。

        學(xué)生直覺認(rèn)為窮人可以向富人借錢,教師引導(dǎo)學(xué)生自主探求,得出:

        窮人30天借到的錢:(萬元)

        窮人需要還的錢:?

        2.學(xué)生探究,解決情境

       。2)教師緊接著把如何求?的問題讓學(xué)生探究,

       、偃粲霉2乘以上面等式的兩邊,得到

       、

        若②式減去①式,可以消去相同的項(xiàng),得到:

        (分) ≈1073(萬元) > 465(萬元)

        由此得出窮人不能向富人借錢

        【設(shè)計(jì)意圖】留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是很顯然的事,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而培養(yǎng)學(xué)生的辯證思維能力.

        解決情境問題:經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就可以消去了,得到: ≈1073(萬元) > 465(萬元) 。老師強(qiáng)調(diào)指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

        【設(shè)計(jì)意圖】經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了,讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù) 學(xué)的信心,同時(shí)也為推導(dǎo)一般等比數(shù)列前n項(xiàng)和提供了方法。

        3.類比聯(lián)想,解決問題

        這時(shí)我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,設(shè)等比數(shù)列為,公比為q,如何求它的前n項(xiàng)和?讓學(xué)生自主完成,然后對個(gè)別學(xué)生進(jìn)行指導(dǎo)。

        一般等比數(shù)列前n項(xiàng)和:

        即

        方法:錯(cuò)位相減法

        這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?

        在學(xué)生推導(dǎo)完成之后,我再問:由得

        【設(shè)計(jì)意圖】在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。

        4.小組合作,交流展示

        探究1.求和

        探究2.求等比數(shù)列的第5項(xiàng)到第10項(xiàng)的和.

        方法1: 觀察、發(fā)現(xiàn):.

        方法2:此等比數(shù)列的連續(xù)項(xiàng)從第5項(xiàng)到第10項(xiàng)構(gòu)成一個(gè)新的等比數(shù)列。

        探究3:求的前n項(xiàng)和.

        【設(shè)計(jì)意圖】采用變式教學(xué)設(shè)計(jì)題組,深化學(xué)生對公式的認(rèn)識和理解,通過直接套用公式、變式運(yùn)用公式、研究公式特點(diǎn)這三個(gè)層次的問題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成.通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生自主學(xué)習(xí)的意識.解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥。

        5.總結(jié)歸納,加深理解

        以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再從知識點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。

        1.等比數(shù)列的前n項(xiàng)和公式

        2. 數(shù)學(xué)思想: (1)分類討論 (2)方程思想

        3.數(shù)學(xué)方法: 錯(cuò)位相減法

        【設(shè)計(jì)意圖】以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。

        6.當(dāng)堂檢測

       。1)口答:

        在公比為q的等比數(shù)列中

        若,則________,若,則________

        若=3,=81,求q及 ,

        若 ,求及q.

       。2)判斷是非:

        ① ( )

       、 ( )

       、廴簪矍遥瑒t

       。 )

        【設(shè)計(jì)意圖】對公式的再認(rèn)識,剖析公式中的基本量及結(jié)構(gòu)特征,識記公式,并加強(qiáng)計(jì)算能力的訓(xùn)練。

        7.課后作業(yè),分層練習(xí)

        必做: P30習(xí)題 1—3 A組 第1題,

        選作題1:求的前n項(xiàng)和

        (2)思考題:能否用其他方法推導(dǎo)等比數(shù)列前n項(xiàng)和公式

       。

        【設(shè)計(jì)意圖】布置彈性作業(yè)以使各個(gè)層次的學(xué)生都有所發(fā)展. 讓學(xué)有余力的學(xué)生有思考的空間,便于學(xué)生開展自主學(xué)習(xí)。

        五、評價(jià)分析

        本節(jié)課通過推導(dǎo)方法的研究,使學(xué)生掌握了等比數(shù)列前n項(xiàng)和公式.錯(cuò)位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);學(xué)生從中深刻地領(lǐng)會(huì)到推導(dǎo)過程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性.同時(shí)通過展示交流,學(xué)生點(diǎn)評,教師總結(jié),使學(xué)生既鞏固了知識,又形成了技能,在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì),形成學(xué)習(xí)能力。

        六、教學(xué)設(shè)計(jì)說明

        1.情境設(shè)置生活化.

        本著新課程的教學(xué)理念,考慮到高二學(xué)生的心理特點(diǎn),讓學(xué)生學(xué)生初步了解“數(shù)學(xué)來源于生活”,采用故事的形式創(chuàng)設(shè)問題情景,意在營造和諧、積極的學(xué)習(xí)氣氛,激發(fā)學(xué)生主動(dòng)探究的欲望。

        2.問題探究活動(dòng)化.

        教學(xué)中本著以學(xué)生發(fā)展為本的理念,充分給學(xué)生想的時(shí)間、說的機(jī)會(huì)以及展示思維過程的舞臺,通過他們自主學(xué)習(xí)、合作探究,展示學(xué)生解決問題的思想方法,共享學(xué)習(xí)成果,體驗(yàn)數(shù)學(xué)學(xué)習(xí)成功的喜悅.通過師生之間不斷合作和交流,發(fā)展學(xué)生的數(shù)學(xué)觀察能力和語言表達(dá)能力,培養(yǎng)學(xué)生思維的發(fā)散性和嚴(yán)謹(jǐn)性。

        3.辨析質(zhì)疑結(jié)構(gòu)化.

        在理解公式的基礎(chǔ)上,及時(shí)進(jìn)行正反兩方面的“短、平、快”填空和判斷是非練習(xí).通過總結(jié)、辨析和反思,強(qiáng)化了公式的結(jié)構(gòu)特征,促進(jìn)學(xué)生主動(dòng)建構(gòu),有助于學(xué)生形成知識模塊,優(yōu)化知識體系。

        4.鞏固提高梯度化.

        例題通過公式的正用和逆用進(jìn)一步提高學(xué)生運(yùn)用知識的能力;由教科書中的例題改編而成,并進(jìn)行適當(dāng)?shù)淖兪?可以提高學(xué)生的模式識別的能力,培養(yǎng)學(xué)生思維的深刻性和靈活性。

        5.思路拓廣數(shù)學(xué)化.

        從整理知識提升到強(qiáng)化方法,由課內(nèi)鞏固延伸到課外思考,變“知識本位”為“學(xué)生本位”,使數(shù)學(xué)學(xué)習(xí)成為提高學(xué)生素質(zhì)的有效途徑。以生活中的實(shí)例作為思考,讓學(xué)生認(rèn)識到數(shù)學(xué)來源于生活并應(yīng)用于生活,生活中處處有數(shù)學(xué).

        6.作業(yè)布置彈性化.

        通過布置彈性作業(yè),為學(xué)有余力的學(xué)生提供進(jìn)一步發(fā)展的空間,有利于豐富學(xué)生的知識,拓展學(xué)生的視野,提高學(xué)生的數(shù)學(xué)素養(yǎng).

        七.教學(xué)反思

        學(xué)生的根據(jù)高二學(xué)生心理特點(diǎn)、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,案例為淺層次要求,使學(xué)生有概括印象。公式為中層次要求,由淺入深,重難點(diǎn)集中推導(dǎo)講解,便于突破。應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗(yàn)證本節(jié)教學(xué)目標(biāo)的落實(shí)。

        其中,案例是基礎(chǔ),使學(xué)生感知教材;公式為關(guān)鍵,使學(xué)生理解教材;練習(xí)為應(yīng)用,使學(xué)生鞏固知識,舉一反三。

        在這三步教學(xué)中,以啟發(fā)性強(qiáng)的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運(yùn)用直觀完整的板書和計(jì)算機(jī)課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,不僅加深了學(xué)生理解鞏固與應(yīng)用,也培養(yǎng)了

        思維能力。

        這節(jié)課總體上感覺備課比較充分,各個(gè)環(huán)節(jié)相銜接,能夠形成一節(jié)完整就為系統(tǒng)的課。本節(jié)課教學(xué)過程分為導(dǎo)入新課、公式推導(dǎo)、合作探究、課堂小結(jié)、當(dāng)堂檢測、布置作業(yè)。本節(jié)課總體上講對于內(nèi)容的把握基本到位,對學(xué)生的定位準(zhǔn)確,教學(xué)過程中留給學(xué)生思考的時(shí)間,以學(xué)生為主體。

        .亮點(diǎn)之處:

        學(xué)生成為課堂的主體,教師要甘當(dāng)學(xué)生的綠葉

        由于數(shù)學(xué)的抽象、思維嚴(yán)謹(jǐn)?shù)忍攸c(diǎn),學(xué)生往往對于一些較為復(fù)雜或者變化多樣的題目容易望而生畏,出現(xiàn)懶得動(dòng)腦思考、動(dòng)筆去做的現(xiàn)象。教師也常因?yàn)闀r(shí)間的限制不可能給學(xué)生過多的時(shí)間去做“無用功”。在本節(jié)課上我放手讓學(xué)生去思考,讓學(xué)生去摸索。不怕學(xué)生出錯(cuò),就是讓學(xué)生能夠在摸索中增強(qiáng)思維能力、解題技能和計(jì)算經(jīng)驗(yàn)。特別是在例3中,教師針對題目做了簡要的分析和提示,讓學(xué)生去嘗試著解題。張漫同學(xué)的板書詳盡,將思路方法概括表述出來,過程完整。只是結(jié)果出現(xiàn)了一個(gè)小錯(cuò)誤,教師在點(diǎn)評過程中給予指出,同時(shí)也個(gè)結(jié)果錯(cuò)誤也是學(xué)生經(jīng)常犯的。

      高二數(shù)學(xué)教學(xué)設(shè)計(jì)6

        一、說教材:

        1、地位、作用和特點(diǎn):

        《xxx》是高中數(shù)學(xué)課本第xx冊(x修)的第xx章“xxx”的第xx節(jié)內(nèi)容。

        本節(jié)是在學(xué)習(xí)了之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí)打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I、生產(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。本節(jié)的特點(diǎn)之一是xx;特點(diǎn)之二是:xxx。

        教學(xué)目標(biāo):

        根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

       。1)知識目標(biāo):A、B、C

       。2)能力目標(biāo):A、B、C

        (3)德育目標(biāo):A、B

        教學(xué)的重點(diǎn)和難點(diǎn):

        (1)教學(xué)重點(diǎn):

       。2)教學(xué)難點(diǎn):

        二、說教法:

        基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動(dòng)學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個(gè)教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)xx真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會(huì)常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時(shí)留給學(xué)生充分的時(shí)間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時(shí)能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計(jì)如下教學(xué)程序:

        導(dǎo)入新課新課教學(xué)反饋發(fā)展

        三、說學(xué)法:

        學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運(yùn)用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時(shí),應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導(dǎo)。

        1、培養(yǎng)學(xué)生學(xué)會(huì)通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

        本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導(dǎo)出,這正是一個(gè)分析和推理的全過程。

        2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會(huì)科學(xué)方法,如在講授時(shí),可通過演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。

        3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵(lì),不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結(jié)和推廣。

        4、在指導(dǎo)學(xué)生解決問題時(shí),引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的.本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

        四、教學(xué)過程:

       。ㄒ唬、課題引入:

        教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實(shí)驗(yàn)。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例。C、講述數(shù)學(xué)科學(xué)的有關(guān)情況。)激發(fā)學(xué)生的探究xx,引導(dǎo)學(xué)生提出接下去要研究的問題。

        (二)、新課教學(xué):

        1、針對上面提出的問題,設(shè)計(jì)學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過動(dòng)手探索有關(guān)的知識,并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。

        2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上是有對比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

        (三)、實(shí)施反饋:

        1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

        2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

        五、板書設(shè)計(jì):

        在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫在左側(cè),中間知識推導(dǎo)過程,右邊實(shí)例應(yīng)用。

        六、說課綜述:

        以上是我對《xxx》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計(jì)。在整個(gè)課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的知識,并把它運(yùn)用到對的認(rèn)識,使學(xué)生的認(rèn)知活動(dòng)逐步深化,既掌握了知識,又學(xué)會(huì)了方法。

        總之,對課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。

      【高二數(shù)學(xué)教學(xué)設(shè)計(jì)】相關(guān)文章:

      數(shù)學(xué)教學(xué)教學(xué)設(shè)計(jì)04-15

      數(shù)學(xué)教學(xué)設(shè)計(jì)01-06

      高二數(shù)學(xué)教學(xué)總結(jié)02-10

      高二數(shù)學(xué)教學(xué)反思11-29

      高二數(shù)學(xué)的教學(xué)計(jì)劃02-07

      數(shù)學(xué)高二教學(xué)計(jì)劃02-15

      高二數(shù)學(xué)優(yōu)秀的教學(xué)反思04-29

      高二數(shù)學(xué)教學(xué)計(jì)劃01-12

      初中數(shù)學(xué)教學(xué)設(shè)計(jì)02-01