亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 因式分解教案

      時間:2023-04-03 15:04:30 教案 投訴 投稿

      因式分解教案模板合集8篇

        作為一名教職工,有必要進行細(xì)致的教案準(zhǔn)備工作,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家整理的因式分解教案8篇,歡迎閱讀,希望大家能夠喜歡。

      因式分解教案模板合集8篇

      因式分解教案 篇1

        教學(xué)目標(biāo)

        1.知識與技能

        了解因式分解的意義,以及它與整式乘法的關(guān)系.

        2.過程與方法

        經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

        3.情感、態(tài)度與價值觀

        在探索因式分解的方法的活動中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學(xué)知識的內(nèi)在含義與價值.

        重、難點與關(guān)鍵

        1.重點:了解因式分解的意義,感受其作用.

        2.難點:整式乘法與因式分解之間的關(guān)系.

        3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解.

        教學(xué)方法

        采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

        教學(xué)過程

        一、創(chuàng)設(shè)情境,激趣導(dǎo)入

        【問題牽引】

        請同學(xué)們探究下面的2個問題:

        問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>

        問題2:當(dāng)a=102,b=98時,求a2-b2的值.

        二、豐富聯(lián)想,展示思維

        探索:你會做下面的填空嗎?

        1.ma+mb+mc=( )( );

        2.x2-4=( )( );

        3.x2-2xy+y2=( )2.

        【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.

        三、小組活動,共同探究

        【問題牽引】

       。1)下列各式從左到右的變形是否為因式分解:

       、伲▁+1)(x-1)=x2-1;

       、赼2-1+b2=(a+1)(a-1)+b2;

       、7x-7=7(x-1).

       。2)在下列括號里,填上適當(dāng)?shù)捻,使等式成立?/p>

        ①9x2(______)+y2=(3x+y)(_______);

       、趚2-4xy+(_______)=(x-_______)2.

        四、隨堂練習(xí),鞏固深化

        課本練習(xí).

        【探研時空】計算:993-99能被100整除嗎?

        五、課堂總結(jié),發(fā)展?jié)撃?/strong>

        由學(xué)生自己進行小結(jié),教師提出如下綱目:

        1.什么叫因式分解?

        2.因式分解與整式運算有何區(qū)別?

        六、布置作業(yè),專題突破

        選用補充作業(yè).

        板書設(shè)計

        15.4.1 因式分解

        1、因式分解 例:

        練習(xí):

        15.4.2 提公因式法

        教學(xué)目標(biāo)

        1.知識與技能

        能確定多項式各項的公因式,會用提公因式法把多項式分解因式.

        2.過程與方法

        使學(xué)生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進行因式分解.

        3.情感、態(tài)度與價值觀

        培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應(yīng)用價值.

        重、難點與關(guān)鍵

        1.重點:掌握用提公因式法把多項式分解因式.

        2.難點:正確地確定多項式的最大公因式.

        3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

        教學(xué)方法

        采用“啟發(fā)式”教學(xué)方法.

        教學(xué)過程

        一、回顧交流,導(dǎo)入新知

        【復(fù)習(xí)交流】

        下列從左到右的變形是否是因式分解,為什么?

        (1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

       。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

        (5)x2-2xy+y2=(x-y)2.

        問題:

        1.多項式mn+mb中各項含有相同因式嗎?

        2.多項式4x2-x和xy2-yz-y呢?

        請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.

        【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的`公因式是y.

        概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.

        二、小組合作,探究方法

        【教師提問】 多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?

        【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

        三、范例學(xué)習(xí),應(yīng)用所學(xué)

        【例1】把-4x2yz-12xy2z+4xyz分解因式.

        解:-4x2yz-12xy2z+4xyz

        =-(4x2yz+12xy2z-4xyz)

        =-4xyz(x+3y-1)

        【例2】分解因式,3a2(x-y)3-4b2(y-x)2

        【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

        解法1:3a2(x-y)3-4b2(y-x)2

        =-3a2(y-x)3-4b2(y-x)2

        =-[(y-x)23a2(y-x)+4b2(y-x)2]

        =-(y-x)2 [3a2(y-x)+4b2]

        =-(y-x)2(3a2y-3a2x+4b2)

        解法2:3a2(x-y)3-4b2(y-x)2

        =(x-y)23a2(x-y)-4b2(x-y)2

        =(x-y)2 [3a2(x-y)-4b2]

        =(x-y)2(3a2x-3a2y-4b2)

        【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.

        【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計算更為簡便.

        解:0.84×12+12×0.6-0.44×12

        =12×(0.84+0.6-0.44)

        =12×1=12.

        【教師活動】在學(xué)生完全例3之后,指出例3是因式分解在計算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

        四、隨堂練習(xí),鞏固深化

        課本P167練習(xí)第1、2、3題.

        【探研時空】

        利用提公因式法計算:

        0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

        五、課堂總結(jié),發(fā)展?jié)撃?/strong>

        1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.

        2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

        六、布置作業(yè),專題突破

        課本P170習(xí)題15.4第1、4(1)、6題.

        板書設(shè)計

        15.4.2 提公因式法

        1、提公因式法 例:

        練習(xí):

        15.4.3 公式法(一)

        教學(xué)目標(biāo)

        1.知識與技能

        會應(yīng)用平方差公式進行因式分解,發(fā)展學(xué)生推理能力.

        2.過程與方法

        經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性.

        3.情感、態(tài)度與價值觀

        培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實際問題中的應(yīng)用價值.

        重、難點與關(guān)鍵

        1.重點:利用平方差公式分解因式.

        2.難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性.

        3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.

        教學(xué)方法

        采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進自己的思維.

        教學(xué)過程

        一、觀察探討,體驗新知

        【問題牽引】

        請同學(xué)們計算下列各式.

       。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

        【學(xué)生活動】動筆計算出上面的兩道題,并踴躍上臺板演.

       。1)(a+5)(a-5)=a2-52=a2-25;

       。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

        【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

        1.分解因式:a2-25; 2.分解因式16m2-9n.

        【學(xué)生活動】從逆向思維入手,很快得到下面答案:

        (1)a2-25=a2-52=(a+5)(a-5).

       。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

        【教師活動】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時,導(dǎo)出課題:用平方差公式因式分解.

        平方差公式:a2-b2=(a+b)(a-b).

        評析:平方差公式中的字母a、b,教學(xué)中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).

        二、范例學(xué)習(xí),應(yīng)用所學(xué)

        【例1】把下列各式分解因式:(投影顯示或板書)

        (1)x2-9y2; (2)16x4-y4;

       。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

       。5)m2(16x-y)+n2(y-16x).

        【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

        【教師活動】啟發(fā)學(xué)生從平方差公式的角度進行因式分解,請5位學(xué)生上講臺板演.

        【學(xué)生活動】分四人小組,合作探究.

        解:(1)x2-9y2=(x+3y)(x-3y);

       。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

       。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

       。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

       。5)m2(16x-y)+n2(y-16x)

        =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

        三、隨堂練習(xí),鞏固深化

        課本P168練習(xí)第1、2題.

        【探研時空】

        1.求證:當(dāng)n是正整數(shù)時,n3-n的值一定是6的倍數(shù).

        2.試證兩個連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.

        四、課堂總結(jié),發(fā)展?jié)撃?/strong>

        運用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通?紤]應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.

        五、布置作業(yè),專題突破

        課本P171習(xí)題15.4第2、4(2)、11題.

        板書設(shè)計

        15.4.3 公式法(一)

        1、平方差公式: 例:

        a2-b2=(a+b)(a-b) 練習(xí):

        15.4.3 公式法(二)

        教學(xué)目標(biāo)

        1.知識與技能

        領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

        2.過程與方法

        經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

        3.情感、態(tài)度與價值觀

        培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

        重、難點與關(guān)鍵

        1.重點:理解完全平方公式因式分解,并學(xué)會應(yīng)用.

        2.難點:靈活地應(yīng)用公式法進行因式分解.

        3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

        教學(xué)方法

        采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

        教學(xué)過程

        一、回顧交流,導(dǎo)入新知

        【問題牽引】

        1.分解因式:

       。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

       。3) x2-0.01y2.

      因式分解教案 篇2

        教學(xué)目標(biāo)

        1、 會運用因式分解進行簡單的多項式除法。

        2、 會運用因式分解解簡單的方程。

        二、教學(xué)重點與難點教學(xué)重點:

        教學(xué)重點

        因式分解在多項式除法和解方程兩方面的應(yīng)用。

        教學(xué)難點:

        應(yīng)用因式分解解方程涉及較多的推理過程。

        三、教學(xué)過程

        (一)引入新課

        1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

        (二)師生互動,講授新課

        1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

        一個小問題 :這里的x能等于3/2嗎 ?為什么?

        想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)

        合作學(xué)習(xí)

        想一想:如果已知 ( )( )=0 ,那么這兩個括號內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論。┦聦嵣希鬉B=0 ,則有下面的結(jié)論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0

        試一試:你能運用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的'根是x1= ,x2=3注:只含有一個未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個時,常用帶足標(biāo)的字母表示,比如:x1 ,x2

        等練習(xí):課本P162課內(nèi)練習(xí)2

        做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?

        教師總結(jié):運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

        (三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:

       。1)運用因式分解進行多項式除法

        (2)運用因式分解解簡單的方程

        (四)布置課后作業(yè)

        作業(yè)本6、42、課本P163作業(yè)題(選做)

      因式分解教案 篇3

        學(xué)習(xí)目標(biāo)

        1、了解因式分解的意義以及它與正式乘法的關(guān)系。

        2、能確定多項式各項的公因式,會用提公因式法分解因式。

        學(xué)習(xí)重點:能用提公因式法分解因式。

        學(xué)習(xí)難點:確定因式的公因式。

        學(xué)習(xí)關(guān)鍵,在確定多項式各項公因式時,應(yīng)抓住各項的公因式來提公因式。

        學(xué)習(xí)過程

        一.知識回顧

        1、計算

        (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

        (3)、m(a+b)(4)、2ab(x-2y+1)

        二、自主學(xué)習(xí)

        1、閱讀課文P72-73的內(nèi)容,并回答問題:

        (1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。

        (2)、知識點二:由m(a+b+c)=ma+mb+mc可得

        ma+mb+mc=m(a+b+c)

        我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣

        ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

        2、練一練。P73練習(xí)第1題。

        三、合作探究

        1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、

        2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

        3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

        (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

        (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

        4、準(zhǔn)確地確定公因式時提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進行:

        (1)確定公因式的數(shù)字因數(shù),當(dāng)各項系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

        例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

        (2)確定公因式的字母及其指數(shù),公因式的.字母應(yīng)是多項式各項都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

        四、展示提升

        1、填空(1)a2b-ab2=ab(________)

        (2)-4a2b+8ab-4b分解因式為__________________

        (3)分解因式4x2+12x3+4x=__________________

        (4)__________________=-2a(a-2b+3c)

        2、P73練習(xí)第2題和第3題

        五、達(dá)標(biāo)測試。

        1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

        (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

        (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

        (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

        2.課本P77習(xí)題8.5第1題

        學(xué)習(xí)反思

        一、知識點

        二、易錯題

        三、你的困惑

      因式分解教案 篇4

        15.1.1 整式

        教學(xué)目標(biāo)

        1.單項式、單項式的定義.

        2.多項式、多項式的次數(shù).

        3、理解整式概念.

        教學(xué)重點

        單項式及多項式的有關(guān)概念.

        教學(xué)難點

        單項式及多項式的有關(guān)概念.

        教學(xué)過程

       、瘢岢鰡栴},創(chuàng)設(shè)情境

        在七年級,我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問題

        1.要表示△ABC的周長需要什么條件?要表示它的面積呢?

        2.小王用七小時行駛了Skm的路程,請問他的平均速度是多少?

        結(jié)論:

        1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.

        2.小王的平均速度是 .

        問題:這些式子有什么特征呢?

       。1)有數(shù)字、有表示數(shù)字的字母.

       。2)數(shù)字與字母、字母與字母之間還有運算符號連接.

        歸納:用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.

        判斷上面得到的三個式子:a+b+c、 ch、 是不是代數(shù)式?(是)

        代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來學(xué)習(xí)和代數(shù)式有關(guān)的整式.

        Ⅱ.明確和鞏固整式有關(guān)概念

       。ǔ鍪就队埃

        結(jié)論:(1)正方形的周長:4x.

       。2)汽車走過的路程:vt.

        (3)正方體有六個面,每個面都是正方形,這六個正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.

       。4)n的相反數(shù)是-n.

        分析這四個數(shù)的特征.

        它們符合代數(shù)式的定義.這五個式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運算符號.還可以發(fā)現(xiàn)這五個代數(shù)式中字母指數(shù)各不相同,字母的個數(shù)也不盡相同.

        請同學(xué)們閱讀課本P160~P161單項式有關(guān)概念.

        根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項式?是單項式的,寫出它的系數(shù)和次數(shù).

        結(jié)論:4x、vt、6a2、a3、-n、 ch是單項式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項式;vt、6a2、 ch都是二次單項式;a3是三次單項式.

        問題:vt中v和t的指數(shù)都是1,它不是一次單項式嗎?

        結(jié)論:不是.根據(jù)定義,單項式vt中含有兩個字母,所以它的次數(shù)應(yīng)該是這兩個字母的指數(shù)的和,而不是單個字母的指數(shù),所以vt是二次單項式而不是一次單項式.

        生活中不僅僅有單項式,像a+b+c,它不是單項式,和單項式有什么聯(lián)系呢?

        寫出下列式子(出示投影)

        結(jié)論:(1)t-5.(2)3x+5y+2z.

        (3)三角尺的'面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.

       。4)建筑面積等于四個矩形的面積之和.而右邊兩個已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

        我們可以觀察下列代數(shù)式:

        a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項式的和組成的式子.是多個單項式的和,能不能叫多項式?

        這樣推理合情合理.請看投影,熟悉下列概念.

        根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).

        a+b+c的項分別是a、b、c.

        t-5的項分別是t、-5,其中-5是常數(shù)項.

        3x+5y+2z的項分別是3x、5y、2z.

        ab-3.12r2的項分別是 ab、-3.12r2.

        x2+2x+18的項分別是x2、2x、18. 找多項式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個項的次數(shù),二是取每個項次數(shù)的最大值.根據(jù)這兩條很容易得到這五個多項式中前三個是一次多項式,后兩個是二次多項式.

        這節(jié)課,通過探究我們得到單項式和多項式的有關(guān)概念,它們可以反映變化的世界.同時,我們也到符號的魅力所在.我們把單項式與多項式統(tǒng)稱為整式.

       、螅S堂練習(xí)

        1.課本P162練習(xí)

       、簦n時小結(jié)

        通過探究,我們了解了整式的概念.理解并掌握單項式、多項式的有關(guān)概念是本節(jié)的重點,特別是它們的次數(shù).在現(xiàn)實情景中進一步理解了用字母表示數(shù)的意義,發(fā)展符號感.

       、酰n后作業(yè)

        1.課本P165~P166習(xí)題15.1─1、5、8、9題.

        2.預(yù)習(xí)“整式的加減”.

        課后作業(yè):《課堂感悟與探究》

        15.1.2 整式的加減(1)

        教學(xué)目的:

        1、解字母表示數(shù)量關(guān)系的過程,發(fā)展符號感。

        2、會進行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及語言表達(dá)能力。

        教學(xué)重點:

        會進行整式加減的運算,并能說明其中的算理。

        教學(xué)難點:

        正確地去括號、合并同類項,及符號的正確處理。

        教學(xué)過程:

        一、課前練習(xí):

        1、填空:整式包括 和

        2、單項式 的系數(shù)是 、次數(shù)是

        3、多項式 是 次 項式,其中二次項

        系數(shù)是 一次項是 ,常數(shù)項是

        4、下列各式,是同類項的一組是( )

        (A) 與 (B) 與 (C) 與

        5、去括號后合并同類項:

        二、探索練習(xí):

        1、如果用a 、b分別表示一個兩位數(shù)的十位數(shù)字和個位數(shù)字,那么這個兩位數(shù)可以表示為 交換這個兩位數(shù)的十位數(shù)字和個位數(shù)字后得到的兩位數(shù)為

        這兩個兩位數(shù)的和為

        2、如果用a 、b、c分別表示一個三位數(shù)的百位數(shù)字、十位數(shù)字和個位數(shù)字,那么這個三位數(shù)可以表示為 交換這個三位數(shù)的百位數(shù)字和個位數(shù)字后得到的三位數(shù)為

        這兩個三位數(shù)的差為

        ●議一議:在上面的兩個問題中,分別涉及到了整式的什么運算?

        說說你是如何運算的?

        ▲整式的加減運算實質(zhì)就是

        運算的結(jié)果是一個多項式或單項式。

        三、鞏固練習(xí):

        1、填空:(1) 與 的差是

       。2)、單項式 、 、 、 的和為

       。3)如圖所示,下面為由棋子所組成的三角形,

        一個三角形需六個棋子,三個三角形需

       。 )個棋子,n個三角形需 個棋子

        2、計算:

        (1)

       。2)

       。3)

        3、(1)求 與 的和

        (2)求 與 的差

        4、先化簡,再求值: 其中

        四、提高練習(xí):

        1、若A是五次多項式,B是三次多項式,則A+B一定是

        (A)五次整式 (B)八次多項式

       。–)三次多項式 (D)次數(shù)不能確定

        2、足球比賽中,如果勝一場記3a分,平一場記a分,負(fù)一場

        記0分,那么某隊在比賽勝5場,平3場,負(fù)2場,共積多

        少分?

        3、一個兩位數(shù)與把它的數(shù)字對調(diào)所成的數(shù)的和,一定能被14

        整除,請證明這個結(jié)論。

        4、如果關(guān)于字母x的二次多項式 的值與x的取值無關(guān),

        試求m、n的值。

        五、小結(jié):整式的加減運算實質(zhì)就是去括號和合并同類項。

        六、作業(yè):第8頁習(xí)題1、2、3

        15.1.2整式的加減(2)

        教學(xué)目標(biāo):1.會進行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達(dá)能力。

        2.通過探索規(guī)律的問題,進一步符號表示的意義,發(fā)展符號感,發(fā)展推理能力。

        教學(xué)重點整式加減的運算。

        教學(xué)難點:探索規(guī)律的猜想。

        教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。

        教學(xué)用具:投影儀

        教學(xué)過程:

        I探索練習(xí):

        擺第1個“小屋子”需要5枚棋子,擺第2個需要 枚棋子,擺第3個需要 枚棋子。按照這樣的方式繼續(xù)擺下去。

       。1)擺第10個這樣的“小屋子”需要 枚棋子

        (2)擺第n個這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。

        二、例題講解:

        三、鞏固練習(xí):

        1、計算:

       。1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

        (3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

        2、已知:A=x3-x2-1,B=x2-2,計算:(1)B-A (2)A-3B

        3、列方程解應(yīng)用題:三角形三個內(nèi)角的和等于180°,如果三角形中第一個角等于第二個角的3倍,而第三個角比第二個角大15°,那么

        (1)第一個角是多少度?

        (2)其他兩個角各是多少度?

        四、提高練習(xí):

        1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?

        2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

       。▂+3)2=0,且B-2A=a,求A的值。

        3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應(yīng)點如圖:

        試化簡:│a│-│a+b│+│c-a│+│b+c│

        小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進行運算。

        作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

      因式分解教案 篇5

        學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運算性質(zhì)的過程,能用代數(shù)式和文字正確地表述,并會熟練地進行計算。通過由特殊到一般的.猜想與說理、驗證,發(fā)展推理能力和有條理的表達(dá)能力.

        學(xué)習(xí)重點:同底數(shù)冪乘法運算性質(zhì)的推導(dǎo)和應(yīng)用.

        學(xué)習(xí)過程:

        一、創(chuàng)設(shè)情境引入新課

        復(fù)習(xí)乘方an的意義:an表示個相乘,即an=.

        乘方的結(jié)果叫a叫做,n是

        問題:一種電子計算機每秒可進行1012次運算,它工作103秒可進行多少次運算?

        列式為,你能利用乘方的意義進行計算嗎?

        二、探究新知:

        探一探:

        1根據(jù)乘方的意義填空

        (1)23×24=(2×2×2)×(2×2×2×2)=2();

        (2)55×54=_________=5();

        (3)(-3)3×(-3)2=_________________=(-3)();

        (4)a6a7=________________=a().

        (5)5m5n

        猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?

        說一說:你能用語言敘述同底數(shù)冪的乘法法則嗎?

        同理可得:amanap=(m、n、p都是正整數(shù))

        三、范例學(xué)習(xí):

        【例1】計算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

        1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

        2.計算:

        (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

        【例2】:把下列各式化成(x+y)n或(x-y)n的形式.

        (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

        (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

        四、學(xué)以致用:

        1.計算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

       、-4444=⑸22n22n+1=⑹y5y2y4y=

        2.判斷題:判斷下列計算是否正確?并說明理由

       、臿2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

        ⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

        3.計算:

        (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

        (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

        (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

        4.解答題:

        (1)已知xm+nxm-n=x9,求m的值.

        (2)據(jù)不完全統(tǒng)計,每個人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個水分子,那么,每個人每年要用去多少個水分子?

      因式分解教案 篇6

        學(xué)習(xí)目標(biāo)

        1、 學(xué)會用公式法因式法分解

        2、綜合運用提取公式法、公式法分解因式

        學(xué)習(xí)重難點 重點:

        完全平方公式分解因式.

        難點:綜合運用兩種公式法因式分解

        自學(xué)過程設(shè)計

        完全平方公式:

        完全平方公式的逆運用:

        做一做:

        1.(1)16x2-8x+_______=(4x-1)2;

        (2)_______+6x+9=(x+3)2;

        (3)16x2+_______+9y2=(4x+3y)2;

        (4)(a-b)2-2(a-b)+1=(______-1)2.

        2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)

        3.下列因式分解正確的是( )

        A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

        C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

        4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

        5.計算:20062-40102006+20052=___________________.

        6.若x+y=1,則 x2+xy+ y2的值是_________________.

        想一想

        你還有哪些地方不是很懂?請寫出來。

        ____________________________________________________________________________________ 預(yù)習(xí)展示一:

        1.判別下列各式是不是完全平方式.

        2、把下列各式因式分解:

        (1)-x2+4xy-4y2

        (2)3ax2+6axy+3ay2

        (3)(2x+y)2-6(2x+y)+9

        應(yīng)用探究:

        1、用簡便方法計算

        49.92+9.98 +0.12

        拓展提高:

        (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

        (2)4x2+y2-4xy-12x+6y+9=0

        求x、y關(guān)系

        (3)分解因式:m4+4

        教后反思 考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的`形式,之后利用公式把式子進行變形,從而達(dá)到進行因式分解的目的,但是這里有用到實際中去的例子,對學(xué)生來說會難一些。

      因式分解教案 篇7

        【教學(xué)目標(biāo)】

        1、了解因式分解的概念和意義;

        2、認(rèn)識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。

        【教學(xué)重點、難點】

        重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。

        【教學(xué)過程】

       、、情境導(dǎo)入

        看誰算得快:(搶答)

        (1)若a=101,b=99,則a2-b2=___________;

        (2)若a=99,b=-1,則a2-2ab+b2=____________;

        (3)若x=-3,則20x2+60x=____________。

       、妗⑻骄啃轮

        1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

        (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

        (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

        2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

        3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補充。)

        板書課題:§6.1 因式分解

        因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

       、、前進一步

        1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

        2、因式分解與整式乘法的關(guān)系:

        因式分解

        結(jié)合:a2-b2 (a+b)(a-b)

        整式乘法

        說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的`形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。

        結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

       、、鞏固新知

        1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

        (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

        (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

        (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

        2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。

       、、應(yīng)用解釋

        例 檢驗下列因式分解是否正確:

        (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

        分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

        練習(xí) 計算下列各題,并說明你的算法:(請學(xué)生板演)

        (1)872+87×13

        (2)1012-992

       、、思維拓展

        1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

        2.機動題:(填空)x2-8x+m=(x-4)( ),且m=

       、、課堂回顧

        今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。

        ㈧、布置作業(yè)

        作業(yè)本(1) ,一課一練

        (九)教學(xué)反思:

      因式分解教案 篇8

        教學(xué)目標(biāo)

        教學(xué)知識點

        使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關(guān)系。

        潛力訓(xùn)練要求。

        透過觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語言概括潛力。

        情感與價值觀要求。

        透過觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。

        教學(xué)重點

        1、理解因式分解的好處。

        2、識別分解因式與整式乘法的關(guān)系。

        教學(xué)難點透過觀察,歸納分解因式與整式乘法的關(guān)系。

        教學(xué)方法觀察討論法

        教學(xué)過程

        Ⅰ、創(chuàng)設(shè)問題情境,引入新課

        導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

        Ⅱ、講授新課

        1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。

        993-99=99×98×100

        2、議一議

        你能嘗試把a3-a化成n個整式的'乘積的形式嗎?與同伴交流。

        3、做一做

       。1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

       、3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

        (2)根據(jù)上面的算式填空:

       、3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

       、躽2-6y+9=()2。⑤a3-a=()()。

        定義:把一個多項式化成幾個整式的積的形式,叫做把這個多項式分解因式。

        4。想一想

        由a(a+1)(a-1)得到a3-a的變形是什么運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什么不同?你還能舉一些類似的例子加以說明嗎?

        下面我們一齊來總結(jié)一下。

        如:m(a+b+c)=ma+mb+mc(1)

        ma+mb+mc=m(a+b+c)(2)

        5、整式乘法與分解因式的聯(lián)系和區(qū)別

        ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。

        6。例題下列各式從左到右的變形,哪些是因式分解?

       。1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

       。3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

        Ⅲ、課堂練習(xí)

        P40隨堂練習(xí)

        Ⅳ、課時小結(jié)

        本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個多項式化成幾個整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。

      【因式分解教案】相關(guān)文章:

      因式分解教案04-02

      因式分解教案12-08

      因式分解復(fù)習(xí)教案08-25

      人教版因式分解教案01-04

      精選因式分解教案3篇03-13

      因式分解教案設(shè)計04-18

      因式分解優(yōu)秀教案(精選14篇)02-20

      因式分解教案模板8篇01-31

      【精華】因式分解教案三篇01-26

      因式分解教案模板7篇03-08

      Copyright©2013-2024duanmeiwen.com版權(quán)所有