三角形內角和教學設計(精選17篇)
在教學工作者開展教學活動前,時常要開展教學設計的準備工作,教學設計要遵循教學過程的基本規(guī)律,選擇教學目標,以解決教什么的問題。那要怎么寫好教學設計呢?下面是小編精心整理的三角形內角和教學設計,僅供參考,歡迎大家閱讀。
三角形內角和教學設計 1
教學目標:
1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現三角形內角和等于180度。
2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經歷猜測探索總結的數學學習過程,在實驗活動中體驗探索的過程和方法。
3、通過運用三角形內角和的性質解決一些簡單的問題,使學生體會數學與現實生活的聯(lián)系,體會到數學的價值,增加學生學數學的信心和興趣。
教學重點:
探索發(fā)現三角形內角和等于180并能應用。
教學難點:
三角形內角和是180的探索和驗證。
教學過程:
一、創(chuàng)設情境,提出問題
師:大家喜歡猜謎語嗎?
生:喜歡。
師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。
(打一幾何圖形))
生:三角形。
師:三角形中都有哪些學問?
生:三角形有三條邊,三個角,具有穩(wěn)定性。
生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。
生:三角形的內有和是180。
生:(一臉疑惑)
師:(板書:三角形的內角和是180),你有什么疑惑? 生:什么是內角?
生:每個三角形的內角和都是180嗎?
(根據學生的問題,在三角形的內角和是180后面加上一個?)
二、自主探索,實踐驗證
1、理解內角 師:什么是內角?
生:我認為三角形的內角就是指三角形的三個角。
師:三角形的每個角都是三角形的內角,每個三角形都有三個內角。
2、理解內角和。
師:那三角形的內角和又是指什么?
生:我認為三角形的內角和就是把三角形的三個內角的度數加起來的和。
師:為了方便,我們將三角形的每個內角編上序號1、2、3、我們叫它1、2、3,這三個角的度數和,就是這個三角形的內角和。
3、實踐驗證
師:每個三角形的內角和都是180嗎?用什么方法來驗證呢?
生:量一量每個角的度數,然后加起來看看是不是180。
師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)
師:誰愿意把你的勞動成果和大家分享一下?
生:我量的這個三角形的三個內角的度數分別是60、60、60,加起來一共是180。
師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。
生:我量這個三角形的三個內角的度數分別是45、45、90,加起來一共是180。
師:這是我們三角尺中的一個,也比較特殊,是一個等腰直角三角形。
生:我量的是三角尺中的另一個,三個內角的度數分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內角的度數分別是85、60、38,加起來一共是183。
師:你發(fā)現了什么?
生:有的三角形的內角和是180,而有的三角形的內角和卻不是180。
師:看來三角形的內角和不一定是180。
生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結果也不夠精確。雖然不都是三個內角加起來不都是180,但都接近180。
生:都接近180就能說一定是180嗎?
師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!
(學生在小組內進行探索驗證。教師巡視,參與到學生的研究中)
師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。
生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內角都向內折,三個內角就拼成了一個平角,也就是180,所以我們小組得出三角形的內角和是180。
師:你折的只是銳角三角形,只能證明銳角三角形的內角和是180,直角三角形,鈍角三角形是不是也是這樣的?
生:我們小組也有折的直角三角形,鈍角三角形。
。ㄆ渌某蓡T展示不同的三角形)
師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!
師:哪個小組和他們的方法不一樣?
生:我們小組把三角形的三個內角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內角都可以拼成平角,所以我們小組得出結論,三角形的內角和是180。
師:這個小組的方法簡便,易操作,很好。
生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180。 師:你們小組很聰明,從長方形的內角和聯(lián)想到直角三角形的內角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!
4、小結
師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內角和都是1800,你還有什么疑問嗎?
生:沒有。
師:(去掉問號)那就讓我們大聲地讀出來三角形的內角和是1800。
三、鞏固應用,加深理解
1、說一說每個三角形的內角和是多少度
師:(出示一個大三角形)這個大三角形的內角和是多少度?
生: 180
師:(出示一個小三角形)這個小三角形的內角和是多少度?
生:180
師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內角和是多少度?
生:180
師:為什么每個三角形的內角和是1800,而合起來還是180呢?另外那180去哪兒了?
生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內角,所以少了180
師:(演示)把一個大三角形分成兩個三角形,每個三角形的內角和是多少度?
生:180
2、求下面各角的度數
師:如果老師告訴你一個三角形的兩個角的度數,你能說出第三個角的度數嗎?
。ǔ觯
生:三角形內角和是180,在第一個三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三個三角形中,用180-20-45,B=115。
3、一個等腰三角形的風箏,它的`一個底角是70,它的頂角是多少度?
生:等腰三角形的兩個底角相等,所以用180-70-70 4、
師:三角形的內角和在我們的生活中應用很廣泛,老師給大家?guī)硪粋在建筑中應用的例子。
在設計這座大橋時,如果設計師將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?
生:用量角器量一量
師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56
師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。
四、回顧總結,拓展延伸
師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?
生:我知道了三角形的內角和是180。
生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內角和都是180。
生:把一個大三角形分成兩個小三角形,每個三角形的內角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內角和還是180。
生:我可以用撕、拼、折等方法來驗證三角形的內角和是180。
師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。
師:那你現在知道為什么一個三角形內只能有一個直角或一個鈍角嗎?
生:兩個直角的度數之和是180,再加上一個角,三個角的度數之和超過了180,所以一個三角形中最多只能有一個直角。
生:兩個鈍角的度數之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。
師:我們學習知識,必須知其然并知其所以然。
師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。
三角形內角和教學設計 2
【教材內容】:
北師大版四年級數學下冊
【教學目標】:
1、探索與發(fā)現三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、培養(yǎng)學生動手操作和合作交流的能力,促進掌握學習數學的方法。
3、培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數學應用數學的興趣。
【教學重點和難點】:
重點掌握三角形的內角和是180°,會應用三角形的內角和解決實際問題;難點是探索性質的過程。
【教材分析】
《三角形內角和》屬于空間與圖形的范疇,是在學生已經接觸了三角形的穩(wěn)定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現三角形的內角和是180°。擴充了學生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質探索,更加深入的培養(yǎng)了學生的空間觀念。
【教學過程】
一、創(chuàng)設情境,激發(fā)興趣。
出示課件,提出兩個兩個疑問:
1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內角和比你大,是這樣的嗎?
2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發(fā)現它們爭論的焦點是三角形的內角和的問題,那什么是三角形的內角?什么又是三角形的內角和呢?
二、初建模型,實際驗證自己的猜想
在第一步的基礎上學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來以便全班進行交流。
三角形的形狀
三角形每個內角的度數
內角和
銳角三角形
鈍角三角形
直角三角形
等腰三角形
等邊三角形
三、再建模型,徹底的得出正確的結論
因為在上一環(huán)節(jié)學生已經得出三角形的內角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產生一些誤差。有的同學難免可能猜想三角形的內角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。
四、應用新知,鞏固練習
1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數。(1小題屬于基本練習)
2、試一試,在直角三角形中已知其中的一個角求另一個角的`度數
3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數求三角形的頂角。
4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內角和是360度,對嗎?
五、拓展與延伸
通過三角形的內角和是180度的事實來探討四邊形、五邊行的內角和。
三角形內角和教學設計 3
【教學內容】
《義務課程標準實驗教科書數學》(人教版)小學數學四年級下冊《三角形》中《三角形的內角和》(書第67頁)。
【教材分析】
三角形是日常生活中常見的一種平面圖形,學生已經在之前的課中了解了三角的特性和三角形的分類等知識。三角形的內角和是三角形的一個重要特征,本節(jié)課的教學是讓學生通過量一量、算一算、拼一拼等活動,理解并掌握三角形的內角和是180°,滲透轉化思想,為今后學習圖形知識打下基礎。
【學情分析】
學生在本課學習前已經認識了三角形的基本特征及分類,并且在四年級上冊已經知道了兩塊三角板上每一個角的度數,由于三角形與日常生活聯(lián)系緊密,圖形直觀,所以教學相對而言操作性很強。而學生的數學知識、能力和思考問題的角度存在一定的差異,因此比較容易出現解決問題的策略多樣化,這樣也對教學的開展提供了很好了研討環(huán)境。
【教學目標】
。1)理解和掌握三角形的內角和是180°,能應用這一結論知識解決相關問題。
。2)經歷“猜想-驗證-得出結論”的學習過程,體驗轉化、推理、極限等上學思想方法,培養(yǎng)大膽質疑、動手操作、合作交流能力。
。3)讓學生體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。通過教學中的活動體會數學的轉化思想。
【教學重難點】
通過操作驗證歸納出三角形的內角和是180°。
【教具、學具準備】
教具:教學課件、硬紙片制作的各種三角形、三角尺。
學具:直角三角形、銳角三角形和鈍角三角形各一個,量角器、兩個三角板,固體膠,剪刀。
【教學過程】
一、創(chuàng)設情境,引出新課
1.師:最近我們一直在研究三角形(課件出示一個大三角形),知道了三角形可以分為哪幾類?
有一天,三角形兄弟們?yōu)榱藘冉呛偷氖鲁沉似饋,我們一起去看看究竟發(fā)生了什么事?
。ㄕn件)師講故事:三角形哥哥理直氣壯地對弟弟說:“我的內角和要比你的大的多.”三角形弟弟不服氣地說:“別看你個頭比我大,但我的內角和并不比你的小”同學們來評評理,誰說的對呢?生:哥哥的對;弟弟說的對……
師:現在出現了不同的意見,有認為三角形哥哥的內角和大,也有覺得三角形弟弟說得對的。那到底誰說的'對呢?三角形的內角和究竟是多少呢?那這節(jié)課我們就一起來研究研究。(出示課題:三角形的內角和)
相信通過這節(jié)課的探究,同學們一定會做出公平、公正的判斷。
2.在探究前,我們有必要先來清楚一下什么是三角形的內角?什么又是內角和呢?
誰來解釋一下,說說你對內角的認識。
信封里有幾個三角形,在其中一個三角形內指出三個內角,并標上角1、角2、角3。
師:內角和就是?三個內角的度數之和
三角形的內角和是多少度呢?所有的三角形內角和都是180度?
你有什么辦法可以驗證呢?
二、新知探究,動手實踐
(1)量一量
A.師:對呀,用量角器量出每個角的度數再算一算度數之和不就知道了。
我們在驗證時,你說至少要研究幾類三角形呢?
生:三類,銳角三角形、直角三角形、鈍角三角形(同意嗎?同意)
B.下面就請小組合作,用量一量的方法來驗證。
要求:
1、4人一組,1人負責記錄、,其他3人每人選擇一個三角形;
2、測量每個內角的度數,并如實記錄在表格中;
3、仔細計算三角形的內角和。
。ㄉ鷦邮植僮鳎瑤熝惨。發(fā)現個別組合作比較好,在很短的時間內就完成任務)
C.匯報交流
師:哪個小組首先來發(fā)表一下你們小組測量的結果?并說說你們組發(fā)現了什么?
。糠N三角形叫兩名同學回答,回答后板書)
師:哪些同學測量的是銳角三角形呢?生:60度、60度、60度
師:這個三角形也叫......生:等邊三角形
師:還有不同的銳角三角形嗎?
師:下面我請測量直角三角形的同學也來匯報
師:請量鈍角三角形的朋友也來說一說
師:剛才,有的同學驗證的結果是三角形的內角和是180度,也有的同學驗證的結果是三角形的內角和接近180度,這說明剛才同學們猜想出的三角形內角和是180度,還值得我們懷疑,那有沒有更好的方法來驗證三角形的內角和肯定是180度。
(2)拼一拼
。ɑ蛟S冷場)鄭老師來個溫馨提示:看到180度使你想到了一個什么特殊的角呢?(平角)
你有什么啟發(fā)?是否也可以把三角形的三個內角拼在一起,成為一個平角呢?誰有想法?指名說后課件出示撕拼。同學們也來試試看吧,我們還是4人一組,選擇其中一個三角形,合作撕一撕或剪一剪再拼一拼,貼到長方形白紙上。
展示交流。
生1:我們小組是用剪拼的方法,將銳角三角形的三個角剪下來,拼成一個平角,得到三角形的內角和是180度。
生2:我們小組是用撕的方法。我們是用手把3個角撕下來,然后再拼,結果也能拼成一個平角。
。3)折一折
師:老師最近也在研究三角形內角和的驗證方法,這不,給大伙帶來了一個你們沒想到的驗證法,請看大屏幕。(課件出示:三類三角形折的過程。)
師:請同學仔細看,認真思考,呆會把你看到的說出來
生:要給兩條線找到中點,連成虛線,往對邊折。
師:由于時間關系,請同學們將這個操作過程帶回到課外去實踐。
操作總會有誤差,比如測量度數時,不一定剛好180°,比如剪拼或折疊時的縫隙,都有可能出現誤差。還有別的方法更能說明三角形的內角和是180°嗎?
(4)演繹推理
A.課件演示:我們可以將新知識轉化成舊知識來解決問題。
一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯(lián)想到直角三角形的內角和是180°。(板書:90°×4=360° 360°÷2=180°)
B.一個直角三角形的內角和是180°,那兩個直角三角形背靠背拼成了大三角形,它的內角和是幾度呢?(課件演示)為什么還是180度?你解釋一下?
師:是哦,當兩個直角三角形拼在一起,兩個直角就消失掉了,所以這個大三角形的內角和仍是180度。
我們通過遮掩過的演繹推理,計算進一步證明了:任意三角形的內角和都是180°。
。5)小結:同學們,剛才我們用哪些方法證明了三角形的內角和是180度?
測量法、撕拼法、折疊法、演繹推理法
師:是的,三角形的內角和都是180度,只是因為我們在測量時會出現一些誤差,所以測量出的結果不是很準確。剛才同學們用這些多方法證明了無論是什么樣的三角形內角和都是1800(板書:是180°)這個結論是我們集體智慧的結晶,是我們親自動手實驗反復驗證得來的,現在我們可以用肯定、自豪的語氣說:三角形的內角和是180°(引導學生齊讀課題)。
數學文化帕斯卡12歲發(fā)現三角形內角和是180度。
早在300多年前就有一位和你們差不多大小的孩子發(fā)現了這個偉大的結論,他就是法國偉大的科學家、數學家帕斯卡。希望在座的各位也好好學習,將來在我們班也產生一些大人物。
三、多樣練習,拓展延伸
1、得出了這個結論,你會不會利用它很快地說出小動物遮蓋著的角是幾度呢?(口頭指名回答)
師:還記得剛剛上課時那3個吵架的三角形嗎?(課件出示)現在大家可以幫忙解決他們吵架的問題了嗎?
解決了它們的紛爭,我們再來幫個忙,算算各個角的度數。(出示課件)學生獨立完成,師巡視指導。師:你是怎么想的?
。1)為什么除以3
(2)為什么除以2
。3)可以用90°-40°=50°嗎?
2、超級變變變
這些三角形很頑皮,跟同學們玩起了超級變變變的游戲。一起來看!
A.課件演示等邊三角形越變越大,問:每個角是幾度?你發(fā)現了什么?
B.等腰三角形也迫不及待地跑下來了:我也要變!我也要變!它是怎么變的呢?
這個等腰三角形的頂角是96度,底角是42度。如果頂角是120底角就是?如果頂角繼續(xù)變大,變成150度,底角就是?如果頂角繼續(xù)變大,變成180度,那底角呢?是幾度?
是的,當頂角180度時,這時就不是一個三角形了,這兩遍和這條長邊重合,其實就是一個180度的平角了。課件演示,問:什么變了?什么沒變?
C.直角三角形又是怎么變的呢?它拉來了一個兄弟,兩個背靠背組成了一個新三角形,這個新三角形的內角和是幾度呢?
3.拓展訓練(老師還給大家準備了兩道聰明題,當中午的作業(yè)。)
A.家里鏡框上的一塊三角形玻璃碎了(如圖)。聰明的明明,只帶了其中的一塊去玻璃店,就配到了和原來一模一樣的。你知道他帶的是哪一塊嗎?
B.已經知道了三角形的內角和是180o,你能求出四邊形、五邊形和六邊形的內角和嗎?
五、課堂總結
這節(jié)課學到了什么?什么讓你記憶深刻?
師:哈哈,真是不錯,帶著疑問進課堂,帶著收獲出課堂,我們合作真是愉快。謝謝!
三角形內角和教學設計 4
【教材分析】:
新課標把三角形的內角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材所呈現的內容,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發(fā)現并形成結論。
【教學目標】
知識與技能
1.理解和掌握三角形的內角和是180度。
2.運用三角形的內角和的知識解決實際問題。
過程與方法
經歷三角形的內角和的探究過程,體驗“發(fā)現——驗證——應用”的學習模式。
情感態(tài)度與價值觀
在學習活動中,滲透探究知識的方法,提高學生學習的能力,培養(yǎng)學生的創(chuàng)新精神和實踐能力。
【教學重點】
重點:理解和掌握三角形的內角和是180度。
突破方法:引導學生用測量或剪拼的方法探究三角形的內角和。合理猜想,測量驗證。
【教學難點】
用三角形的內角和解決實際問題。
突破方法:推理分析計算。運用推理,正確計算。
教法:質疑
【教學方法】
引導,演示講解。
學法:實踐操作,小組合作。
【教學準備】:
多媒體課件,銳角,直角,鈍角三角形的硬紙片,剪刀。
【教學時間】
一課時
【教學過程】
一.創(chuàng)設情境,引入新課
師:同學們,我們這倆天學習了三角形的分類,通過對角的分類,我們能夠分成幾類三角形?
生:三類,分別為銳角三角形,直角三角形,鈍角三角形。
師:嗯,真好,那么對邊的分類呢?
生:倆類,分別為等腰三角形,等邊三角形。
師:老師想讓同學們幫老師畫一個三角形,能做到嗎?
生:能。
師:請聽要求,畫一個有一個角是直角的三角形,開始。(學生動手操作)
師:再來一個可以嗎?請聽要求,畫一個有倆個角是直角的三角形,開始。
生:不能畫,因為當倆個角是90度的時候,倆個頂點在一條線上,不能組成封閉圖形。
師:回答的真好,那么為什么會出現這種情況呢?是因為三角形中的角而引起的,那么同學們想不想知道其中的秘密呢?
生:想。
師:好,那么我們今天就一起來學習“三角形的內角和”(出示板書)
。ㄔO計意圖:通過學生的動手操作,發(fā)現問題所在,這樣更能調動學生的學習興趣,為了更好的學習這節(jié)課做鋪墊.)
二.探究新知
師:昨天呢,老師讓同學們一人做一個自己喜歡的三角形,請同學們拿出來,看一看你們做的是什么樣子的三角形。
生1:銳角三角形。
生2:直角三角形。
生3:鈍角三角形。
師:嗯,我們在上個星期學習了三角形的各部分名稱,誰能幫我告訴下同學們,角在哪里呢?
生:里面的三個角,可以用角1,角2,角3來表示。
師:嗯,這三個角我們也可以說成是三角形的內角,好了,今天我們既然學習三角形的內角和,也就是求成這三個角的度數和,你們猜一猜三角形內角和的度數是多少呢?
生:三角形的內角和是180度。
師:那么我們能不能一起用一些好的辦法來驗證一下呢?
生1:我們可以用量角器分別量出這三個內角的度數,然后再加在一起就可以求出三角形內角的和了。
師:還有其他的辦法嗎?
生2:我們可以用剪子剪下三個角,然后把它們拼在一起,看看這三個角拼在一起之后能夠呈現出什么樣子的角。
生3:我可以用折的'方法,把三個角的度數折在一起。
師:同學們說的真好,既然有這么多的方法,到底哪個方法好呢?我們一起來研究一下,我把全班分成倆個小組,一隊用量的方法,一隊用拼的方法,看看哪個小組做的又對又快,開始。
。ㄔO計意圖:通過學生的動手操作,合作交流,真正的把課堂還給學生,讓學生成為學習的主體,教師適時引導,突出學生的學習的能力與價值。)
三.總結任意三角形的內角和是180度并做適當練習。
四.板書設計
三角形的內角和
量一量銳角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
鈍角三角形:120度+38度+22度=180度
拼一拼圖形呈現
折一折圖形呈現
三角形內角和教學設計 5
教學目標:
1、通過“算一算,拼一拼,折一折”等操作活動探索發(fā)現和驗證“三角形的內角和是180度”的規(guī)律。
2、在操作活動中,培養(yǎng)學生的合作能力、動手實踐能力,發(fā)展學生的空間觀念。并運用新知識解決問題。
3、使學生有科學實驗態(tài)度,激發(fā)學生主動學習數學的興趣,體驗數學學習成功的喜悅。
教學重點:
探究發(fā)現和驗證“三角形的內角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。
教學難點:
對不同探究方法的指導和學生對規(guī)律的靈活應用。
教具學具準備:
課件、學生準備不同類型的三角形各一個,量角器。
教學過程:
一、創(chuàng)設情景,引出問題
1、課件出示三角形的爭吵畫面
銳角三角形:我的內角和度數最大。
直角三角形:不對,是我們直角三角形的內角和最大。
鈍角三角形:你們別吵了,還是鈍角三角形的內角和最大。
師:此時,你想對它們說點什么呢?
2、引出課題。
師:看來三角形里角一定藏有一些奧秘,這節(jié)課我們就來研究有關三角形角的知識“三角形內角和”。(板書課題)
二、探究新知
1、三角形的內角、內角和
。1)什么是三角形內角(課件)
三角形里面的`三個角都是三角形的內角。為了方便研究,我們把每個三角形的3個內角分別標上∠1、∠2、∠3。
。2)三角形內角和(課件)
師:內角和指的是什么?
生:三角形的三個內角的度數的和,就是三角形的內角和。
2、看一看,算一算。
師:算一算兩個三角尺的內角和是多少度?(課件)
學生計算
師:是不是所有的三角形的內角和都是180°呢?你能肯定嗎?
。A設)師:大家意見不統(tǒng)一,我們得想個辦法驗證三角形的內角和是多少?可以用什么方法驗證呢?
3、操作驗證:小組合作。
選1個自己喜歡的三角形,選喜歡的方法進行驗證。
。ɡ蠋熓紫葹閷W生提供充分的研究材料,如三種類型的三角形若干個(小組之間的三角形大小都不相同),剪刀,量角器,白紙,直尺等,以及充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)
4、學生匯報。
。1)教師:匯報的測量結果,有的是180°,有的不是180°,為什么會出現這種情況?
師:有沒有別的方法驗證。
(2)剪拼
a、學生上臺演示。
B、請大家四人小組合作,用他的方法驗證其它三角形。
C、展示學生作品。
D、師展示。
。3)折拼
師:有沒有別的驗證方法?
師:我在電腦里收索到拼和折的方法,請同學們看一看他是怎么拼,怎么折的(課件演示)。
。ü膭顚W生積極開動腦筋,從不同途徑探究解決問題的方法,同時給予學生足夠的時間和空間,不斷讓每個學生自己參與,而且注重讓學生在經歷觀察、操作、分析、推理和想像活動過程中解決問題,發(fā)展空間觀念和論證推理能力。)
師:此時,你想對爭論的三個三角形說些什么呢?
5、小結。
三角形的內角和是180度。
三、解決相關問題
1、在能組成三角形的三個角后面畫“√”(課件)
2、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數。(課件)
3、一個等腰三角形的風箏,它的一個底角是70°,他的頂角是多少度?(課件)
四、練習鞏固
1、看圖,求三角形中未知角的度數。(課件)
2、求三角形各個角的度數。(課件)
五、總結。
師:這節(jié)課你有什么收獲?
六、板書設計:
三角形的內角和是180°
三角形內角和教學設計 6
教學內容:
四年級下冊第78~79頁的例4和“練一練”,練習十二第10~13題。
教學目標:
1、使學生通過觀察、操作、比較、歸納等活動,發(fā)現三角形的內角和等于1800,并能應用這一知識求三角形中一個未知角的度數。
2、使學生經歷探索和發(fā)現三角形內角和等于1800的過程,進一步增強自主探索的意識,積累類比、歸納等活動經驗,發(fā)展空間觀念。
3、使學生在參與學習活動的過程中,形成互助合作的學習氛圍,培養(yǎng)大膽猜想、敢于質疑、勇于實踐的科學精神。
教學重點:
讓學生經歷“三角形內角和等于180°”這一知識的形成、發(fā)展和應用的全過程。
教學難點:
探究和驗證“三角形內角和等于180°”。
教學準備:
學生準備三角板一副、量角器;教師準備多媒體課件、信封里裝三角形紙片若干。
教學過程:
一、創(chuàng)設情境,產生疑問
1、理解內角和含義。
2、故事激趣
提問:三兄弟圍繞什么問題在爭吵?你有什么看法?
二、自主學習,合作探究
1、提出猜想。
(1)計算三角板的內角和。
。2)提出猜想。
提問:通過剛才的計算,你能得出什么結論?有同學懷疑嗎?
指出:“三角形的內角和等于1800”只是根據這兩個特殊三角形得到的一個猜想。
引導:需用更多的三角形驗證。
2、進行驗證。
(1)驗證教師提供的三角形。
測量:任意三角形的內角和。
、傩〗M合作:用量角器量出信封里不同三角形的內角和。
、诮涣鳒y量結果。
、厶釂枺焊鶕䴗y量結果,你能得出什么結論?
拼一拼:把一個三角形的三個角拼在一起。
、偎伎迹撼肆浚可以用什么方法驗證呢?
②同桌合作:嘗試把三個內角拼成一個平角。
③反饋不同的拼法。
、芴釂枺杭热蝗切蔚娜齻內角能拼成一個平角,你能得出什么結論?有懷疑嗎?
解釋誤差問題。
(2)驗證學生自己畫的三角形。
學生任意畫一個三角形,用自己喜歡的方法去驗證。
交流:自己畫的三角形驗證出來內角和是1800嗎?有誰驗證
出來不是1800的嗎?
提問:你又能得到什么結論?還有懷疑嗎?
3、得出結論。
指出:三角形有無窮多,課上得到的還只是一個猜想。隨著驗證的深入,能越來越確定這個猜想是對的。
說明:科學家們已經經過嚴格的論證,證明了所有三角形的內角和確實都是1800。
解決爭吵:學生用三角形內角和的知識勸解三兄弟。
三、鞏固應用,深刻感悟
1、算一算:求三角形中未知角的`度數。
2、拼一拼:用兩塊相同的三角尺拼成一個三角形。
思考:拼成的三角形內角和是多少?
3、畫一畫:(1)你能畫出一個有兩個銳角的三角形嗎?
。2)你能畫出一個有兩個直角的三角形嗎?
。3)你能畫出一個有兩個鈍角的三角形嗎?
四、全課總結,課后延伸
1、學生自主總結一節(jié)課的收獲。
2、介紹帕斯卡。
3、用三角形拼成四邊形、五邊形、六邊形,引發(fā)新的問題。
三角形內角和教學設計 7
教學內容:
人教版小學數學第八冊第85頁例5及”做一做”
教學目標:
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想
3、在探索中體驗發(fā)現的樂趣,增強學好數學的信心、
教學重點
讓學生經歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過程。
教學難點 :
驗證所有三角形的內角之和都是180°
教具準備:
多媒體課件。
學具準備:
量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)
教學過程:
一、 設疑引思
1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內角的度數、
2、 每小組請一位同學說出自已量的三角形中兩個角的度數老師迅速”猜出”第三個角的度數、
3、 設問:老師為什么能很快”猜” 出第三個角的度數呢?
三角形還有許多奧妙,等待我們去探索、<導入新課,板書課題>
二、 探索交流,獲取新知
1、 量一量:每個學生將自已剛才量出的三角形的.內角和的度數相加,初步得出”三角形的內角和是180°”的結論、
2、 折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發(fā)現:一個三角形的內角和就是正方形4個角內角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內角和是180°”的結論、
3、 拼一拼:學生先動手剪拼所準備的三角形,進一步驗證得出”三角形的內角和是180°”的結論、
4、 師利用課件演示將一個三角形的三個角拼成一個平角的過程、
5、 驗證:FLASH演示三種三角形割補過程
發(fā)現1: 通過把直角三角形割補后,內角∠2,∠3 組成了一個()角,等于()度,∠1等于90度。所以直角三角形的內角和等于( )度。
發(fā)現2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內角和都是180度。
6、 小結:剛才能過量一量折一折拼一拼,你發(fā)現了什么?
生說,師板書:三角形的內角和———180°
三、 應用練習,拓展提高
1、書例5后”做一做”
思考:為什么不能畫出一個有兩個直角的三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)
2、下面哪三個角會在同一個三角形中。
(1)30、60、45、90
(2)52、46、54、80
。3)61、38、44、98
3、走向生活:
。1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門上了,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?
(結合學生回答進行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)
四 作業(yè):作業(yè)本
五 全課總結
總結:今天這節(jié)課我們研究了三角形的內角和,你們學到了哪些知識,有什么收獲?
板書設計:三角形的內角和
三角形的內角和———180°
三角形內角和教學設計 8
教學目標:
1、通過測量,撕拼,折疊等方法。探索和發(fā)現三角形三個內角和的度數等于180°。
2、引導學生動手實驗,經歷知識的生長過程培養(yǎng)學生的探索意識和動手能力,初步感受數學研究方法。
3、能運用三角形內角和知識解決一些簡單的問題。
教學重點:
探索和發(fā)現“三角形內角和是180°”。
教學難點:
驗證“三角形內角和是180°,以及對這一知識的靈活運用。”
教具準備:
三角形,多媒體課中。
教學過程設計:
一、創(chuàng)設情境:故事引入,森林王國里住著平面圖形和立體圖形兩大家族,一天平面圖形的三角形家庭傳出一片吵鬧聲,大三角形與小三角形在爭論:聽大三角形說:“我的內角和比你大”,小三角形不服氣,可又不知如何反駁,同學們,你們知道到底誰的內角和大嗎?
二、探究新知:
。ㄒ唬⒘恳涣浚核娜艘恍〗M,分別測量本組準備的三角形的內角,并求出和。
你們發(fā)現三角形的內角和是多少?匯報,提出疑問,三角形的內角和是不是剛好等于180°
(二)、拼一拼
引導學生獨立完成,撕下二個角與第三個角拼在在一起,發(fā)現了什么?
引導學生得出:三角形內角和等于180°
。ㄈ┱垡徽
引導學生同桌互相幫助完成,發(fā)現三個角形的三個內角折在一起是平角。
回答大小三角形的爭論:大三角形與小三角形的內角形誰大?并說出理由。
三、鞏固拓展
1、填一填
、僦苯切稳切蔚膬蓚銳角和是()度。
、谥苯侨切蔚'一個銳角是45°,另一個銳角是()度。
、垅g角三角形的兩上內角分別是20°,60°;則第三個角是()
2、火眼金晴
①鈍角三角形的兩個鈍角和大于90°()。
②直角三角形的兩個銳角之和正好等于90°()。
、厶詺猱嬃艘粋三個角分別是50°,70°,50°的三角形()
、軆蓚銳角是60°的三角形是等邊三角形()
⑤長方形的內角和等于360°()。
3、猜一猜:四邊形的內角和是多少度?
五邊形的內角和是多少度?
四、小結,今天學習了什么?你有什么收獲?
三角形內角和教學設計 9
教學目標:
1、讓學生通過量、剪、拼、折等活動,主動探究推導出三角形內角和是180度,并運用所學知識解決簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透"轉化"數學思想。
3、在學生親自動手和歸納中,使學生體驗成功的喜悅,激發(fā)學生主動學習數學的興趣。
教學重點:
讓學生經歷"三角形內角和是180°"這一知識的形成、發(fā)展和應用的全過程。
教學難點:
通過小組內量一量、折一折、撕一撕等活動,驗證"三角形的內角和是180°。"
教師準備:
4組學具、課件
學生準備:
量角器、練習本
教學過程:
一、興趣導入,揭示課題
1、導入:"同學們,這幾天我們都在研究什么知識?能說說你們都認識了哪些三角形嗎?它們各有什么特點?"
。ㄉ鍪救切尾R報各類三角形及特點)
2、今天老師也帶來了兩個三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來了?快聽聽它們?yōu)槭裁闯称饋砹耍?"哦,它們?yōu)榱巳齻內角和的大小而吵起來。"(設置矛盾,使學生在矛盾中去發(fā)現問題、探究問題。)
3、我們來幫幫它們好嗎?
4、那么什么叫內角啊?你們明白嗎?誰來說說?來指指。
你能標出三角形的三個角嗎?(生快速標好)
數學中把三角形的這三個角稱為三角形的內角,三個內角加起來就叫內角和。這節(jié)課我們就來研究一下"三角形的內角和"(課件片頭1)
"同學們,用什么方法能知道三角形的內角和?"
二、猜想驗證,探究規(guī)律 (動手操作,探究新知)
1.量角求和法證明:
先聽合作要求:拿出準備的一大一小的兩個三角形,現在我們以小組為單位來量一量它們的內角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?
。1)學生聽合作要求后分組合作,將各種三角形的內角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。
。2)指名匯報各組度量和計算內角和的結果。
。3)觀察:從大家量、算的結果中,你發(fā)現什么?
歸納:大家算出的三角形內角和都等于或接近180°。
(5)思考、討論:
通過測量計算,我們發(fā)現三角形的內角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?
大家討論討論。
現在各小組就行動起來吧,看哪些小組的方法巧妙?纯茨艿贸鍪裁唇Y論?
看同學們拼得這樣開心,老師也想拼拼,行嗎?演示課件。
看老師最終把三個角拼成了一個什么角?平角。是多少角?
"180°是一個什么角?想一想,怎樣可以把三角形的三個內角拼在一起?如果拼成一個180 度的平角就可以驗證這個結論,對嗎?"(課件3)
現在,我們可驗證三角形的內角和是(180度)?
2、那么對任意三角形都是這個結論?請看大屏幕。
演示銳角三角形折角。 (三個頂點重合后是一個平角,折好后是一個長方形。)
你們想不想去試一試。
1、小組探究活動,師巡視過程中加入探究、指導(如生有困難,師可引導、有可能出現折不到一起的情況,可演示以幫助學生)
2、"你通過哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示范,可隨機改變順序)
a、驗證直角三角形的內角和
折法1中三個角拼在一起組成了一個什么角?我們可以得出什么結論?
引導生歸納出:直角三角形的內角和是180°
折法2 我們還可以得出什么結論?
引導生歸納出:直角三角形中兩個銳角的和是90°。
。矗翰槐厝齻角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)
b、驗證銳角、鈍角三角形的內角和。
歸納:銳角、鈍角三角形的內角和也是180°。
放手發(fā)動學生獨立完成 ,逐一種類匯報 師給予鼓勵
三、總結規(guī)律
剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內角量、剪、撕,能不能給三角形內角下一個結論呢?(生:三角形的內角和是180°)對!不論是哪種三角形,不論大!我們可以得出一個怎樣的結論?
(三角形的.內角和是180°。)
。ń處煱鍟喝切蔚膬冉呛褪180°學生齊讀一遍。)
為什么用測量計算的方法不能得到統(tǒng)一的結果呢?
。康牟粶。有的量角器有誤差。)
老師的大三角形內角和大小三角形內角和大呀?(一樣大)首尾呼應
四、應用新知,知識升華。
。ㄗ寣W生體驗成功的喜悅)
現在,我們已經知道了三角形的內角和是180°,它又能幫助我們解決那些問題呢?
。ㄕn件5……)
在一個三角形中,有沒有可能有兩個鈍角呢?
。ú豢赡。)
追問:為什么?
。ㄒ驗閮蓚銳角和已經超過了180°。)
有兩個直角的一個三角形
。ㄒ驗槿切蔚膬冉呛褪180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)
問:那有沒有可能有兩個銳角呢?
。ㄓ,在一個三角形中最少有兩個內角是銳角。)
1、 看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)
2、做一做:
在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數、
3、27頁第3題(數學信息較為隱藏和生活中的實際問題)
4、思考題
五、總結
今天,我們在研究三角形的內角和時經歷了猜想、驗證、得出結論的過程,并且運用這一結論解決了一些問題。人們在進行科學研究中,常常都要經歷這樣的過程,同時,它也是一種科學的研究方法。
板書設計:
三角形內角和
量一量 拼一拼 折一折
三角形內角和是180°
三角形內角和教學設計 10
【設計理念】
新課標重視讓學生經歷數學知識的構成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,帶給足夠的時間和空間讓學生經歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經歷知識的構成過程。這樣,學生不僅僅能夠掌握知識,而且能夠積累探究數學問題的活動經驗,發(fā)展空間觀念和推理潛力。
【教材資料】
新人教版義務教育課程標準實驗教科書四年級下冊數學第67頁例6、“做一做”及練習了十六的第1、2、3題。
【教材分析】
三角形的內角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習了多邊形的內角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現,安排兩次實驗操作活動。教材呈現教學資料時,不但重視體現知識的構成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學帶給了清晰的思路。概念的構成沒有直接給出結論,而是透過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內角和是180°。
【學情分析】
。薄⒃趯W習了本課時,學生已經有了探索三角形內角和的知識基礎:明白直角和平角的度數,會用量角器度量角的度數;認識長方形、正方形,明白他們的四個角都是直角;認識了三角形,明白了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經明白了等腰三角形和正三角形。
2、已經有一部分學生明白了三角形內角和是180°,只是知其然而不知所以然。
【教學目標】
1、通過“量、剪、拼”等活動發(fā)現、驗證三角形的內角和是180°,并能運用這個知識解決一些簡單的問題。
2、在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作潛力,積累基本的數學活動經驗,發(fā)展空間觀念和推理潛力。
3、在參與數學學習了活動的過程中,獲得成功的體驗,感受數學探究的嚴謹與樂趣。
【教學重點】
探索發(fā)現、驗證“三角形內角和是180°”,并運用這個知識解決實際問題。
【教學難點】
驗證“三角形的內角和是180°”。
【教(學)具準備】
多媒體課件;銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學步驟】
一、復習了舊知引出課題
1、你已經明白有關三角形的哪些知識?
2、出示課題:三角形的內角和
【設計意圖:也自然導入新課。】
二、提出問題引發(fā)猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預設:
(1)三角形的內角指的是哪些角?
。2)三角形的內角和是什么意思?
。3)三角形的內角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內角和是多少度?你是怎樣猜的?
【設計意圖:提出一個問題比解決一個問題更重要。課始在復習了三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習了自己想研究的資料,無疑激發(fā)了學生的學習了興趣,培養(yǎng)了學生的問題意識。由于學生在平時使用三角板時已經若隱若現地有了特殊的直角三角形的內角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內角和是多少,并說說是怎樣猜的,以激發(fā)學生已有知識經驗,并體會到猜想要合理且有根據,同時也為推理驗證的引出作必要的鋪墊!
三、操作驗證構成結論
1、交流驗證方法:
(1)用什么方法證明三角形的內角和是180度呢?
預設:
、倭克惴
、诩羝捶
、壅燮捶ǖ
(2)三角形的個數有無數個,驗證哪些三角形能夠代表所有的三角形?我們的操作過程怎樣分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結:剛才通過大家的動手操作驗證了三角形的內角和是180°度。但動手操作會存在必須的誤差,我們的結論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內角和來證明其他三角形內角和是180°的方法。
6、構成結論:任意三角形的內角和是180°。
【設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向學生帶給充分從事數學活動的.機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗!辈聹y后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現了三角形內角和是180°這個結論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數學活動經驗,為后續(xù)的學習了帶給了經驗支撐。】
四、應用結論解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風箏的頂角是多少度?
3、辨析訓練,完善結論。
五、課堂總結,歸納研究方法
這天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:
用這天所學的方法繼續(xù)研究四邊形的內角和。
七、板書設計:
三角形的內角和
猜測:三角形的內角和是180°?
驗證:量拼
結論:任意三角形的內角和是180°
三角形內角和教學設計 11
一、教學目標:
1、理解掌握三角形內角和是180°,并運用這一性質解決一些簡單的問題。
2、通過直觀操作的方法,引導學生探索并發(fā)現三角形內角和等于180°,在實驗活動中,體驗探索的過程和方法。
3、在探索和發(fā)現三角形內角和的過程中獲得成功的體驗。
二、教學重、難點:
重點:探索并發(fā)現三角形內角和等于180°。
難點:運用三角形內角和等于180°的性質解決一些實際問題。
教具:課件、三角形若干。
學具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。
三、教學過程
。ㄒ唬﹦(chuàng)設情境,導入新課
我們已經學過了三角形的知識,我們來復習一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內角,而這三個內角的和就是這個三角形的內角和。那么誰來說一說什么是三角形的內角和?三角形有大有小,形狀也各不相同,那么它們的內角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細聽它們都說了什么?
教師放課件。
課件內容說明:一個大的直角三角形說:“我的`個頭大,我的內角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”
都聽清它們在爭論什么嗎?(它們在爭論誰的內角和大。)誰能說一說你的想法?(學生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內角和”。
。ò鍟n題:三角形內角和)
。ǘ┳灾魈骄,發(fā)現規(guī)律
1、探究三角形內角和的特點。
。1)檢查作業(yè),并提出要求:
昨天老師讓每位學生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數,都完成了嗎?拿出來吧,一會我們要算出三角形的內角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。
小組活動記錄表
小組成員的姓名
三角形的形狀
每個內角的度數
三角形內角的和
。ㄒ螅禾钔瓯砗,請小組成員仔細觀察你發(fā)現了什么?)
、谛〗M合作。
會使用表格了嗎?下面我們就以小組為單位,按照要求把結果填在小組長手中的表格內。
各組長進行匯報。發(fā)現了三角形的內角和都是180°左右。
師:實際上,三角形三個內角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數據。
2、驗證推測。
那么同學們有沒有什么辦法知道三角形的內角和就是180°呢?大家可以討論一下,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學們在下面操作進行體驗,再用課件演示把三個內角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學生也動手試一試。
通過我們的驗證我們可以得出三角形的內角和是180°。
板書:(三角形內角和等于180°。)
3、師談話:三個三角形討論的問題現在能解決了嗎?你現在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統(tǒng)的整理。)
4、同學們還有什么疑問嗎?大家想一想我們知道了三角形內角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)
出示書28頁,試一試第3題,并講解。
說明:在直角三角形中一個銳角等于30°,求另一個銳角。
生獨立做,再訂正格式、以及強調不要忘記寫度。
小結:同學們有沒有不明白的地方?如果沒有我們來做練習。
。ㄈ╈柟叹毩暎卣箲
1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?
完成,并填在書上。講一講直角三角形還有什么解法。
2、出示29頁第2題。
說明:一個鈍角三角形說:我的兩個銳角之和大于90°。
一個直角三角形說:我的兩個銳角之和正好等于90°。讓學生判斷。
3、畫一畫:
出示四邊形和六邊形。運用三角形內角和是180°計算出各自的內角和。你能推算出多邊形的內角和嗎?
三角形內角和180度是科學家帕斯卡12歲時發(fā)現的。我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現。
。ㄋ模┱n堂總結
讓學生說說在這節(jié)課上的收獲!
三角形內角和教學設計 12
【教學內容】
新課標人教版四年級下冊第五單元《三角形》
【教材分析】
“三角形內角和”這節(jié)課是新課標人教版四年級下冊第五單元的教學內容,是在學生學習了三角形的概念及特征之后進行的。教材先給出了量這一思路,繼而讓學生探索驗證三角形內角和是180度這一觀點。在活動過程中,先通過“畫一畫、量一量”,產生初步的發(fā)現和猜想,再“拼一拼、折一折”,引導學生對已有猜想進行驗證,經歷提出猜想——進行驗證的的過程,滲透數學學習方法和思想。
【學生分析】
學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節(jié)課的重點。四年級的學生已經初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。
【學習目標】
1.學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現“三角形內角和等于180度”的規(guī)律。
2.在探究過程中,經歷知識產生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學過程】
一、創(chuàng)設情境,發(fā)現問題
1、魔術導入:把長方形的紙剪兩刀,怎樣拼成一個三角形?
2、你知道三角形的那些知識?(復習)
3、小游戲:猜一猜藏在信封后面的是什么三角形。
師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形。看來在一個三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
(創(chuàng)設的不是生活中的情境,而是數學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現出學生在認知上的矛盾,學生用已經學的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣。)
二、引導探究,解決問題
1.介紹內角、內角和
師:我們現在研究三角形的'三個角,都是它的內角,以后到了初中,還會接觸三角形的外角?蠢蠋熓掷锏娜切,關于它的三個內角,除了我們已經掌握的知識外,你還知道哪方面的知識?誰能說一說三角形的內角和指的是什么?
已經知道三角形的內角和是多少的同學,可以把它寫在本上。不知道的同學想一想,計量內角和的單位是度,可以估計一下,各種各樣的三角形的內角和是不是一個固定的數,有可能會是多少度,把你的猜想也寫在本上。
我們這節(jié)課就來一起探究用哪些方法能知道三角形的內角和。
2.確定研究范圍(預設約3-5分)
師:研究三角形的內角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)
請你想個辦法吧!
(通過引導學生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數學思想)
3.動手操作實踐(預設約8-10分)
同桌組成學習小組,拿出課前制作的各種各樣的三角形,先找到三個內角,把每個角標上序號。老師提出要求:先試著研究自己的三角形,然后再共同研究小組里其他同學的三角形,看看各種三角形內角和是不是一樣的。(學生動手操作試驗,在小組中討論問題)
。榱藵M足學生的探究欲望,發(fā)揮學生的主觀能動性,我在設計學具的時候,想了幾個不同的方案,最后決定課前讓學生在學習小組里分工合作制作各種不同的三角形,課上就讓學生就用自己制作的三角形,通過獨立探究和組內交流,實現對多種方法的體驗和感悟。)
4.匯報交流(預設約15-20分)
。1)測量的方法
學生匯報量的方法,師請同學評價這種方法。
師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?
。2)剪拼的方法
學生匯報后師小結:能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)
師:把三角形的三個內角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產生誤差,有時會差一點點,誰還有別的方法確定三角形的內角和一定是180°?
(3)折拼的方法
學生匯報后師小結:我們要研究三角形的內角和,實際上就是想辦法把三角形的三個內角湊到一起,像剪和折的方法,看三個內角拼到一起是不是180度,都是借助我們學過的平角解決的問題。
這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內角和一定是180度?
。4)演繹推理的方法
(借助學過的長方形,把一個長方形沿對角線分成兩個三角形。)
師:你認為這種方法好不好?我們看看是不是這么回事。
師小結:這種方法避免了在剪拼過程中由于操作出現的誤差,非常準確的說明了三角形的內角和一定是180度。
。▽W生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發(fā)展而言,探究的過程比探究獲得的結論更有價值。)
學生用的方法會非常多,怎樣對這些方法進行引導,是值得思考的問題。這些方法的思維水平不應該是平行的:直接測量的方法是學生利用已有的知識,測量出每個角的度數,再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考,是一種批判的思維。前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內角和是原來長方形的四個內角之和360度,所以一個三角形的內角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內角和,它有嚴密性和精確性;谝陨系南敕,我覺得在課上不能停留在學生對方法的描述上,而應引導學生經歷從直觀到抽象、思維程度從低到高的過程,感悟數學的嚴謹性。所以在最后一個環(huán)節(jié)中,教師向全班同學推薦這種分的方法,大家一起來做一做,不要求全體都掌握,就想起到引導和點撥的作用。學生在經歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現一些新的規(guī)律。】
5.驗證猜想
請學生把剛才研究的三角形舉起來,分別是銳角三角形、直角三角形、鈍角三角形,這三類的三角形內角和都是180度,那就可以說,所有的三角形的內角和都是180度。
這個結論和課前剛才知道的或猜的一樣嗎?
。ㄔ诤芏嗤瑢W都知道三角形內角和的情況下,要引導學生領悟有了猜測還要去驗證,這是一種科學的研究問題的方法,是一種求實精神。)
6.解釋課前問題
用內角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。
三、拓展應用,深化創(chuàng)新
1.介紹科學家帕斯卡(出示帕斯卡的資料)
師:帕斯卡為科學作出了巨大的貢獻,在我們以后學習的知識中,也有很多是帕斯卡發(fā)現和驗證的,他12歲就發(fā)現三角形內角和是180度,我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現。
2.四邊形內角和及多邊形內角和(幻燈片)
你打算用哪種方法知道四邊形的內角和?
你覺得哪種方法更好?
。ㄔO計求四邊形的內角和,是把這個新問題轉化歸結為求幾個三角形內角和的問題上,滲透化歸的數學學習方法。)
3.總結
我們把四邊形一分為二,用三角形內角和的知識知道了四邊形內角和,那么五邊形、六邊形……這些多邊形的內角和是多少度?有沒有什么規(guī)律可循,希望同學們能用學到的知識和方法去探究問題,你還會有一些精彩的發(fā)現。
三角形內角和教學設計 13
教學內容:
北師版小學數學四年級下冊《探索與發(fā)現(一)—三角形內角和》
教材分析:
《三角形內角和》是北師大版小學數學四年級下冊第二單元第三節(jié)的內容,是在學生認識了直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形的特點的基礎上進一步探究三角形有關性質中的三個內角和的性質,是“空間與圖形”領域的重要內容之一。教材在呈現教學內容時,不但重視知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間。三角形的內角和的性質沒有直接給出,而是提供了豐富多彩的動手實踐的素材,讓學生通過探索、實驗、討論、交流而獲得,從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數學經驗,同時發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。
學情分析:
本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經具備一定的關于三角形的認識的直接經驗,也已具備了一些相應的三角形知識,這為感受、理解、抽象“三角形的內角和”的性質,打下了堅實的基礎。同時,通過近四年的數學學習,學生已初步掌握了一些學習數學的基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。能在小組長帶領下,圍繞數學問題開展初步的討論活動,能比較清楚的表達自己的意見,認真傾聽他人的發(fā)言,具備了初步的數學交流能力。
教學目標:
1、讓學生經歷“猜想、驗證、歸納、應用”等知識形成的全過程,探索并發(fā)現“三角形內角和等于1800,”,并能應用規(guī)律解決一些實際問題。
2、在探索過程中培養(yǎng)學生的動手實踐能力、協(xié)作能力及創(chuàng)新意識和探究精神,發(fā)展學生的空間思維能力,同時使學生養(yǎng)成獨立思考的`習慣。
3、在活動中,讓學生體驗主動探究數學規(guī)律的樂趣,體驗學數學的價值,激發(fā)學生學習數學的熱情。
教學重點:
讓學生經歷“猜想、驗證、歸納、應用”等知識形成的全過程,探索并發(fā)現三角形內角和等于1800,并能應用規(guī)律解決一些實際問題。
教學難點:
掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數學思想探究三角形內角和。
教學用具:
表格、課件。
學具準備:
各種三角形、剪刀、量角器。
一、創(chuàng)設情境揭示課題。
1、復習
提問:前面我們已經學習了三角形的一些知識,誰能介紹一下呢?
生回憶三角形的特征,三角形分類,三角形具有穩(wěn)定性等內容。
2、引入
三角形具有穩(wěn)定形,三角形家族是一個團結的家族,但今天家族內部卻發(fā)生了激勵的爭論。
播放課件,提問:它們在爭論什么?
什么是三角形的內角和?(板書:內角和)
講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數加起來就是三角形的內角和。
二、自主探究,合作交流。
。ㄒ唬┨岢鰡栴}:
1、你認為誰說得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個三角形的內角和呢?
學生可能會說:用量角器量一量三個內角各是多少度,把它們加起來,再比較。
(二)探索與發(fā)現
1、初步探索,提出猜想。
(1)量一量
、倭私饣顒右螅海ㄆ聊伙@示)
A、在練習本上畫一個三角形,量一量三角形三個內角的度數并標注。(測量時要認真,力求準確)
B、把測量結果記錄在表格中,并計算三角形內角和。
C、討論:從剛才的測量和計算結果中,你發(fā)現了什么?
。ㄒ龑仡櫥顒右螅
、、小組合作。
、邸R報交流。
你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現了什么?
。ㄒ龑W生發(fā)現每個三角形的三個內角和都在1800,左右。)
。2)提出猜想
剛才我們通過測量和計算發(fā)現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)
2、動手操作,驗證猜想
這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)
引導:1800,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?
。1)、小組合作,討論驗證方法。
。2)分組匯報,討論質疑
學生可能會出現的方法:
A、撕拼的方法
把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是1800,。
討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?
B、折一折的方法
把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于1800。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?
C提問:還有沒有其它的方法?
3、回顧兩種方法,歸納總結,得出結論。
(1)課件演示:兩種方法的展示。
。2)引導學生得出結論。
孩子們,三角形內角和到底等于多少度呢?”
學生一定會高興地喊:“1800!
。3)總結方法,齊讀結論
我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們?yōu)樽约旱某晒恼!齊讀結論。(板書:得到結論)
。4)解釋測量誤差
為什么我們剛才通過測量,計算出來的三角形內角和不是1800,呢?
那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于1800
。ㄈ、回顧問題:
現在你知道這兩個三角形誰說得對了嗎?(都不對。
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內角和等于1800,。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數學書28頁第3題
∠A=180°— 90°—30°
2、練一練:數學書29頁第一題(生獨立解決)
∠A=180°— 75°— 28°
3、小法官:數學書29頁第二題
4、拓展創(chuàng)新
A D G
B C E F H R
ABC的內角和是()
DEF的內角和是()
GHR的內角和呢?
小結:三角形的形狀和大小雖然不同,但是三角形的內角和都是180度。
四、回顧課堂,滲透數學方法。
1、總結:猜想—驗證—歸納—應用的數學方法。
2、介紹:三角形內角和等于180度這個結論的由來;數學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動:探索——多邊形內角和
板書設計:
三角形內角和等于1800。
猜想驗證得出結論應用
三角形內角和教學設計 14
背景分析:
在學習“三角形的內角和”之前,學生已經學習了三角形的特性和分類,知道平角的度數是180°,并且能夠用量角器測量角的大小!叭切蔚膬冉呛褪180°”是三角形的一個基本特征,也是“空間與圖形”領域中的重要內容之一,學好它有助于學生理解三角形三個內角之間的關系,也為以后進一步學習幾何知識打下良好的學習基礎。
教學目標:
1、通過測量、剪拼、折拼等活動讓學生全面經歷探索和發(fā)現“三角形的內角和等于180°”的過程。
2、會用“三角形的內角和等于180°”這個結論進行一些簡單的計算和推理。
3、體會數學學習的魅力,體驗探究學習的樂趣。
教學重難點:
探索和發(fā)現三角形的內角和等于180°。
教具準備:
多媒體課件、一副三角板、量角器、三角形紙片。
學具準備:
每個小組準備4個量角器、4把剪刀、兩副三角板、兩個學具袋,兩個學具袋中各裝有2個完全相同的銳角三角形、1個直角三角形、一個鈍角三角形。其中1號學具袋中,還裝有表格紙一張。
教學過程:
一、導入課題
1、故事引入,激發(fā)興趣
同學們,今天,老師給大家?guī)硪粋小故事,想聽嗎?
課件顯示數學家——帕斯卡的圖片
師:孩子們,你們認識他嗎?這可是位了不起的人物,他的名字叫帕斯卡。他可是位數學奇人,從小就癡迷于數學,可帕斯卡的父親卻不支持他學習數學,因為,他從小就體弱多病,然而,這并不能阻擋帕斯卡對數學的熱愛,一個個數學問題就像磁石一樣深深地吸引著帕斯卡。他常常背著父親一個人偷偷琢磨。12歲那年,他發(fā)現了一個改變他一生的數學問題,當父親知道后激動的熱淚盈眶。從此以后,父親不僅支持他學習數學,而且還盡全力幫助他。在父親的幫助下,帕斯卡成為了世界著名的數學家、物理學家。
師:究竟是什么發(fā)現讓父親的態(tài)度發(fā)了180°的大轉彎呢,想知道嗎?
揭示并板書課題:三角形的內角和。生齊讀課題。
2、明確目標
學貴有疑,看到這個課題,你想知道些什么?或者你有什么疑問?(什么是三角形的內角和?三角形的內角和是多少度?)
3、效果預期
帶著這些問題,我們一起走進今天的探究之旅,老師期待大家的精彩表現,大家準備好了嗎?。
〖評析〗教師用數學家生動的勵志故事導入新課,從情緒上深深感染了學生,激發(fā)了學生的學習興趣,喚起了學生的求知欲望,同時,也為數學文化的引入作了必要的鋪墊。
二、民主導學
1、任務呈現
。1)認識內角、內角和
師:同學們還認識這些三角形寶寶嗎?三角形按角分,能分為銳角三角形、鈍角三角形、直角三角形。
師:老師手里拿的是?(三角板)它是什么三角形?(直角三角形)老師把它打在白板上。
師:每個三角形的里面都有3個角,我們把它們稱之為三角形的內角,為了方便,我們給他們分別編上編號∠1、∠2、∠3,
師:請同學們拿出2號袋中的三角形,快速找出三角形的三個內角,然后像老師這樣給他們分別標上∠1、∠2、∠3
師:這個三角板上的三個內角分別是多少度呢?現在我們把這三個內角的度數加起來是(180°),算得真快,也就是說這個三角形的內角和180°這個三角形的內角和呢?也是180°也就是這兩個三角形的內角和都是180°。
師:請大家看這里,如果把這個三角形的三個內角搬個家,都搬到一起,能拼成我們學過的什么叫?(平角)平角是多少度?(180°)
師:這是我們學過的特殊三角形,對吧,那么像黑板上這些一般的三角形內角和會是多少度呢?我們先來猜想一下好不好?誰來猜?同學們都認為三角形的內角和是180°,但口說無憑呀,到底是不是180°我們應該驗證一下,對吧?
師:我們現在開始驗證好嗎?動手之前,請聽好活動要求
屏幕出示要求,指名學生讀:
想一想,你打算怎樣驗證,在小組內交流你的想法,共同確定一種驗證方法;
想用量的方法驗證的小組,請取出1號袋中的表格和三角形,根據表格上的內容完成相應的測量、計算,并向小組長匯報,小組長負責填空匯總;
想用其它方法驗證的小組,請取出2號袋中的三角形,小組長做好分工,每兩個同學用一個三角形進行驗證或一人單獨驗證,動手前,先討論討論該怎么做,然后試著拼一拼;
驗證結束后,小組內交流你們的發(fā)現,回憶驗證過程,做好匯報準備。
2、自主學習
學生分組活動,教師巡視指導。(用量的方法的要填寫學具袋中的表格)
3、展示交流(提示:匯報時,要說清楚你研究的三角形的類型)
師:來吧孩子們,該到全班交流的時候了。哪個小組愿意先把你們的成果與大家一起分享。
。、剪拼法(撕拼法)
這個小組通過剪拼得出三角形的內角和是180
B、折拼法
剛才拼的過程中,老師發(fā)現有個孩子特別的難過,因為他覺得這些三角形寶寶太可憐了,我們把這些三角形寶寶都大卸三塊兒了,的確是這樣,現在動腦筋想想,在不破壞三角形的情況下,能不能想辦法把三角形的三個內角弄成一個平角?(折)那你們就試試,(行,不行)到底行不行,老師給大家演示一下,先標出三個內角,把∠1折下來,把∠2、∠3分別靠過來,現在觀察一下,這三個角通過折的方法拼成平角了嗎?行還是不行,剛才說不行的孩子一定沒按這種方法折,下面請按老師的方法試試
C、測量法
用量的方法的小組,你們得出的三角形的內角和都是180°,不是180°的請舉手,一樣的三角形為何測量得出的結果不一樣,是什么原因呢?(誤差)由于測量工具測量方法等原因,會難免會有誤差,正因為這些誤差,導致測量結果五花八門,各不相同,現在你們的疑惑解開了嗎?
剛才我們猜想三角形的內角和可能是180°,現在你想說什么?(一定、肯定、絕對、百分之百)
小結:通過剛才同學們的驗證,得出了什么結論(板書:結論)三角形的內角和是180°。大家發(fā)現了嗎?無論是撕一撕、折一折、還是拼一拼,這些方法都有異曲同工之妙,都把本不在一起的三個角,通過移動位置,把它轉化成一個平角來驗證,都用了轉化的策略(板書:轉化)。希望大家能把轉化的方法運用到今后的學習中去,去解決更多的數學問題。
〖評析〗探索三角形內角和的過程,既是解決數學問題的過程,也是培養(yǎng)學生動手實踐能力和科學精神的過程。在這一過程中,學生既經歷了新知的形成過程,又獲得了成功的體驗。
4、數學文化介紹
你們想知道12歲的.帕斯卡是用什么方法研究的嗎?誰來猜一猜?
生:
師:(邊演示邊介紹)他把長方形分成兩個完全相同的直角三角形,其中一個直角三角形的內角和就是180°
師:接下來,他就想其他三角形的內角和是不是180°呢?于是,他任意畫了一個三角形并做高,誰看懂他的意思了?
生:分成了兩個直角三角形。
師:你真會觀察,請大家看,∠1+∠2=
生:90°
師:∠3+∠4=
師:那么這個三角形的內角和就是
生:180°
師:由此說明任意三角形的內角和都是180°。你們覺得帕斯卡的方法怎么樣?
生:巧妙!
師:是的,他的方法太巧妙了。今天同學們用自己的聰明才智也研究出了三角形的內角和是180°,老師相信你們的父親也會為你們感到驕傲!下面,我們就用這個結論,來解決一些數學問題。
〖評析〗通過對數學文化的介紹,讓學生了解帕斯卡的證明過程,既開闊了學生的知識視野,要引導學生的思維由具體到抽象,培養(yǎng)了思維的嚴謹性,同時激發(fā)了學生對數學家的崇敬之情,讓學生體驗到數學邏輯的論證之美,進而產生了對數學的熱愛。
5、練習
(1)猜一猜:在一個三角形中,∠1=30°,∠2=50°,∠3等于多少度?師:讓學生回答:說說怎么想的?
。2)2、算一算:三角形每個內角是多少度?師:課件出示后,請大家拿出答題紙快速解答下面的問題:
求出等邊三角形每個角的度數?
等腰三角形頂角96°,底角是多少度?
直角三角形的一個銳角是40°,另一個銳角是多少度?
〖評析〗練習設計科學合理,層次清晰,針對性強,讓學生較好地鞏固了所學知識;拓展性練習不僅加深了學生對新知識的理解和掌握,而且要滿足了不同層次學生的認知需要,同時培養(yǎng)了學生思維的靈活性,促進了思維的發(fā)展。
三、檢測導結(下面進入檢測環(huán)節(jié),大家愿意接受挑戰(zhàn)嗎?)
1、目標檢測(見檢測卡)
2、結果反饋
集體訂正
課外作業(yè):那么四邊形、五邊形、六邊形的內角和分別是多少呢?作為課后作業(yè),課后探究。
3、反思總結
回顧一下今天學的內容,你有什么收獲?
大家真的非常了不起,不僅學到了數學知識,更重要的是經歷了猜想、驗證、得出結論、應用的科學探究的過程,老師送給大家一句話:“在數學的天地里,重要的不是我們知道什么,而是我們怎么知道的!呥_哥拉斯”
其實在歷史上有許多數學家都曾經研究過三角形的內角和,最早研究的誰,你們知道嗎?
生:帕斯卡
師:NO,另有其人,如果大家感興趣,課后可以去查一查。
〖評析〗引導學生回顧本節(jié)課所學知識,有助于對所學內容的內化和提升。同時,將數學文化自然延伸到到課外,使數學文化貫穿整節(jié)課的始終。
三角形內角和教學設計 15
設計思路
本節(jié)課我先引導學生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現:各類三角形的三個內角都可以拼成一個平角。再引導學生通過折角的方法也發(fā)現這個結論,由此獲得三角形的內角和是180°的結論。概念的形成沒有直接給出結論,而是通過量、算、拼、折等活動,讓學生探索、實驗、發(fā)現、推理歸納出三角形的內角和是180°。
最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次性和趣味性,還設計了開放性的練習,由一個同學出題,其它同學回答。先給出三角形兩個內角的度數,說出另外一個內角,有唯一的答案。給出三角形一個內角,說出其它兩個內角,答案不唯一,可以得出無數個答案。讓學生在游戲中拓展學生思維。
教學目標
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。
3、使學生體驗成功的喜悅,激發(fā)學生主動學習數學的興趣。
教學重點
讓學生經歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過程。
教學準備
教具:多媒體課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。
學具:三角形
教學過程
一、引入
。ㄒ唬┱J識三角形的內角及三角形的內角和
師:我們已經學習了三角形的分類,誰能說說老師手上的是什么三角形?
師:今天我們來學習新的知識《三角形內角和》,誰能說說哪些角是三角形的內角?(讓學生邊說邊指出來)
師:那三角形的內角和又是什么意思?(把三角形三個內角的度數合起來就叫三角形的內角和。)
(二)設疑,激發(fā)學生探究新知的心理
師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)
生:能。
師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:……
師:問題出現在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!
(揭示矛盾,巧妙引入新知的探究)
二、動手操作,探究三角形內角和
(一)猜一猜。
師:猜一猜三角形的內角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……
。ǘ┎僮、驗證三角形內角和是180°。
1、量一量三角形的內角
動手量一量自己手中的三角形的內角度數。
師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內角的度數,再加起來。
師:哦,也就是測量計算,是嗎?
學生匯報結果。
師:請匯報自己測量的結果。
生1:180°。
生2:175°。
生3:182°。
……
2、拼一拼三角形的內角
學生操作
師:沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。
師:怎樣才能把三個內角放在一起呢?(學生操作)
生:把它們剪下來放在一起。
師:很好。
匯報驗證結果。
師:通過拼合我們得出什么結論?
生1:銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。
生2:直角三角形的內角和也是180°。
生3:鈍角三角形的內角和還是180°。
課件演示驗證結果。
師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)
師:我們可以得出一個怎樣的結論?
生:三角形的內角和是180°。
。ń處煱鍟喝切蔚膬冉呛褪180°學生齊讀一遍。)
師:為什么用測量計算的方法不能得到統(tǒng)一的結果呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
3、折一折三角形的內角
師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內角和是180°。
如果學生說不出來,教師便提示或示范。
學生操作
4、小結:三角形的內角和是180°。
三、解決疑問。
師:現在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)
生:因為三角形的`內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。
師:在一個三角形中,有沒有可能有兩個鈍角呢?
生:不可能。
師:為什么?
生:因為兩個銳角和已經超過了180°。
師:那有沒有可能有兩個銳角呢?
生:有,在一個三角形中最少有兩個內角是銳角。
四、應用三角形的內角和解決問題。
1、下面說法是否正確。
鈍角三角形的內角和一定大于銳角三角形的內角和。()
在直角三角形中,兩個銳角的和等于90度。()
在鈍角三角形中兩個銳角的和大于90度。()
④一個三角形中不可能有兩個鈍角。()
、萑切沃杏幸粋銳角是60度,那么這個三角形一定是個銳角三角形。()
2、看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)
3、游戲鞏固。
由一個同學出題,其它同學回答。
(1)給出三角形兩個內角,說出另外一個內角(有唯一的答案)。
。2)給出三角形一個內角,說出其它兩個內角(答案不唯一,可以得出無數個答案)。
4、根據所學的知識算出四邊形、正五邊形、正六邊形的內角和。
五、全課總結。
今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣?
反思:
在本節(jié)課的學習活動過程中,先讓學生進行測量、計算,但得不到統(tǒng)一的結果,再引導學生用把三個角拼在一起得到一個平角進行驗證。這時,有部分學生在拼湊的過程中出現了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導學生用折三角形的方法也能驗證三角形的內角和是180°。練習設計也具有許多優(yōu)點,注意到練習的梯度,并由淺入深,照顧到不同層次學生的需求,也很有趣味性。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發(fā)展空間觀念和推理能力。
但因為是借班上課,對學生了解不多,學生前面的內容(三角形的特性和分類)還沒學好,所以有些練習學生就沒有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學生掌握比較困難。
三角形內角和教學設計 16
教學內容:
教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
教學目標:
1.通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。
2.能運用三角形的內角和是180°這一結論,求三角形中未知角的度數。
3.培養(yǎng)學生動手動腦及分析推理能力。
重點難點:
掌握三角形的內角和是180°。
教學準備:
三角形卡片、量角器、直尺。
導學過程
一、復習
1、什么是平角?平角是多少度?
2、計算角的度數。
3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)
二、新知
(設計意圖:讓學生經歷質疑驗證結論這樣的思維過程,真正整體感知三角形內角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數學知識背景,滲透數學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現”。同時,培養(yǎng)學生的綜合素養(yǎng))
1、讀學卡的學習目標、任務目標,做到心里有數。
2、揭題:課件演示什么是三角形的內角和。
3、猜想:三角形的內角和是多少度。
4、驗證:
(1)初證:用一副三角板說明直角三角形的內角和是180°。
。2)質疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內角和 是180°(師巡視)
。4)匯報結論(清楚明白的給小組加優(yōu)秀10分)
5、結論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說明三角形無論大小它的內角和都是180°(課件演示)
7、看微課感知“偉大的發(fā)現”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現三角形內角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)
三、知識運用(課件出示練習題,生解答)
1、填空
。1)一個三角形,它的兩個內角度數之和是110 ,第三個內角是( )
(2)一個直角三角形的一個銳角是50,則另一個銳角是( )。
。3)等邊三角形的3個內角都是( )。
。4)一個等腰三角形,它的一個底角是50,那么它的.頂角是( )。
。5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。
2、判斷
。1)一個三角形中最多有兩個直角。 ( )
。2)銳角三角形任意兩個內角的和大于90。 ( )
。3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )
(4)三角形任意兩個內角的和都大于第三個內角。 ( )
(5)直角三角形中的兩個銳角的和等于90。 ( )
四、拓展探究
根據所學的知識,你能想辦法求出四邊形、五邊形的內角和嗎?
1、小組討論。2、匯報結果。3、課件提示幫助理解。
五、自我評價根據學卡要求給自己評出“優(yōu)”“良好”“合格”。
六、談談自己本節(jié)課的收獲。
教學反思
今天我講了《三角形內角和》這部分內容,學生其實通過不同途徑已經知道三角形內角和是180°,是不是說這節(jié)課的重難點就已經突破了,只要學生能應用知識解決問題就算是達到這節(jié)課的教學目標了呢?我想應該好好思考教材背后要傳遞的東西。
任何規(guī)律的發(fā)現都要經過一個猜測、驗證的過程,不經歷這個探究的過程,學生對于這一內容的認識就不深刻,聰明的孩子還會懷疑三角形內角和是180°嗎?。因此這個結論必須由實踐操作得出結論。所以最終我把本課定為一個實踐探究課。
如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學生由已知順利轉向對未知的探求,怎樣直接轉向研究三個角的“和”的問題呢?因此我只設計了三個簡單的問題然學生快速進入主題。
如何驗證內角和是180°,是我一直比較糾結的環(huán)節(jié)。由于小學生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結果充滿自信,否則拼個差不多也可以簡單的認同了內角和是180°。
本節(jié)課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內角和體會三角形內角和跟大小無關、跟形狀無關,到已知兩個角的度數求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內角和是多少度,求被剪開的三角形,形成的新圖形的內角和是多少度,這些都是對三角形內角和的一次拓展。讓學生的認知發(fā)生沖突,提出挑戰(zhàn)。
給學生一個平臺,她會給你一片精彩。通過動手操作來驗證內角和是否是180°,學生最容易出現的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現,我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。
前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內角和時,給的時間過短,學生沒有充分思維。
總而言之,這次的公開課,給了我一次學習和鍛煉的機會。在教案設計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預設好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數學團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學中,能夠在一個輕松和諧的教學氛圍中與學生共同去探討,去發(fā)現,去學習。
三角形內角和教學設計 17
教學內容:本節(jié)課的教學內容是義務教育課程標準實驗教科書數學四年級下冊第五單位的第四課時《三角形的內角和》,主要內容是:驗證三角形的內角和是180°等。
教學內容分析:三角形的內角和是180是三角形的一個重要性質,它有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。
教學對象分析:作為四年級的學生已有一定的生活經驗,在平時的生活中已經接觸到三角形,在尊重學生已有的知識的基礎上和利用他們已掌握的學習方法,教師把課堂教學組織生動、活潑,突出知識性、趣味性和生活性,使學生能在輕松愉快的氣氛中學習。
教學目標:
1、知識目標:學生通過量、剪、拼、擺等操作學具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內角和是180°,并運用所學知識解決簡單的實際問題。
2、能力目標:培養(yǎng)學生的觀察、歸納、概括能力和初步的空間想象力。
3、情感目標:培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。
教學重點:
理解并掌握三角形的內角和是180°。
教學難點:
驗證所有三角形的內角之和都是180°。
教具準備:
多媒體課件、各種三角形等。
學具準備:
三角形、剪刀、量角器等。
教學過程:
一、出示課題,復習舊知
1、認識三角形的內角。
。ǎ保⿵土暼切蔚母拍。
。ǎ玻┙榻B三角形的“內角”。
2、理解三角形的'內角“和”。
【設計理念】通過復習三角形的概念的過程,不僅可以鞏固學生的舊知識而且可以為新知識教學提供知識鋪墊。
二、動手操作,探究新知
1、通過預習,認識結論,提出疑問
2、驗證三角形的內角和
。1)用“量一量、算一算”的方法進行驗證
、賲R報測量結果
、诋a生疑問:為什么結果不統(tǒng)一?
、劢鉀Q疑問:因為存在測量誤差。
。2)用“剪一剪、拼一拼”的方法進行驗證
、僦笇Ъ舴ā
、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。
、垓炞C得出:三角形的內角和是180°。
(3)用“折一折”的方法進行驗證
、僦笇д鄯ā
、俜謩e折:銳角三角形、直角三角形、鈍角三角形。
③再次驗證得出:三角形的內角和是180°。
3、看書質疑
【設計理念】此過程采用直觀教學手段。通過讓學生動手量、拼等直觀演示操作直接作用于學生的感官,激活學生的思維,有助于學生的認識由具體到抽象的轉化。從而明確三角形的內角和是180°。
三、實踐應用,解決問題:
1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數。
2、求出三角形各個角的度數。(圖略)
3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是
70°,它的頂角是多少度?
4、根據三角形的內角和是180°,你能求出下面的四邊形和正六邊形的內角和嗎?(圖略)
5、數學游戲。
【設計理念】練習設計的優(yōu)化是優(yōu)化教學過程的一個重要方向,所以在新授后的鞏固練習中注意設計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學生牢固掌握新知。
四、總結全課、延伸知識:
1、今天你們學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎樣?
2、知識延伸:給學生介紹一種更科學的驗證方法——轉化。
【設計理念】課堂總結不僅要關注學生學會了什么,更要關注用什么方法學,要有意識的促進學生反思。
板書設計: 三角形的內角和是180°
方法:①量一量 拼角(略)
、谄匆黄
、壅垡徽
【設計理念】此板書設計我力求簡明扼要、布局合理、條理分明,體現了簡潔美和形象美,把知識的重點充分地展現在學生的眼前,起了畫龍點睛的作用。
【三角形內角和教學設計】相關文章:
《三角形內角和》的教學設計10-07
《三角形內角和》教學設計10-07
《三角形的內角和》教學設計03-14
《三角形內角和》教學設計04-07
《三角形的內角和》教學設計07-20
《三角形內角和》教學設計07-31
三角形的內角和的教學設計07-24
三角形內角和教學設計04-12
《三角形的內角和〉教學設計10-07
三角形內角和教學設計03-09