- 相關(guān)推薦
冀教版《勾股定理》優(yōu)秀教案(通用17篇)
作為一位無私奉獻的人民教師,通常會被要求編寫教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。怎樣寫教案才更能起到其作用呢?以下是小編收集整理的冀教版《勾股定理》優(yōu)秀教案,希望對大家有所幫助。
冀教版《勾股定理》優(yōu)秀教案 1
學習目標
1、通過拼圖,用面積的方法說明勾股定理的正確性。
2.探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)型結(jié)合的思想。
重點難點或?qū)W習建議
學習重點:用面積的方法說明勾股定理的正確。
學習難點:
勾股定理的應用.
學習過程教師
二次備課欄
自學準備與知識導學:
這是1955年希臘為紀念一位數(shù)學家曾經(jīng)發(fā)行的郵票。
郵票上的圖案是根據(jù)一個著名的數(shù)學定理設計的。
學習交流與問題研討:
1、探索
問題:分別以圖中的直角三角形三邊為邊向三角形外
作正方形,小方格的面積看做1,求這三個正方形的面積?
S正方形BCED=S正方形ACFG=S正方形ABHI=
發(fā)現(xiàn):
2、實驗
在下面的方格紙上,任意畫幾個頂點都在格點上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。
請完成下表:
S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系
112
145
41620
91625
發(fā)現(xiàn):
如何用直角三角形的三邊長來表示這個結(jié)論?
這個結(jié)論就是我們今天要學習的勾股定理:
如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾
練習檢測與拓展延伸:
練習1、求下列直角三角形中未知邊的長
練習2、下列各圖中所示的線段的長度或正方形的`面積為多少。
(注:下列各圖中的三角形均為直角三角形)
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;
(2)b=8,c=17,則S△ABC=________。
2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()
A.12cmB.10cmC.8cmD.6cm
4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)
5、飛機在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機距離這個男孩5千米,飛機每小時飛行多少千米?
課后反思或經(jīng)驗總結(jié):
1、什么叫勾股定理;
2、什么樣的三角形的三邊滿足勾股定理;
3、用勾股定理解決一些實際問題。
冀教版《勾股定理》優(yōu)秀教案 2
教學目標
1、知識與技能目標
用數(shù)格子(或割、補、拼等)的辦法體驗勾股定理的探索過程并理解勾股定理反映的直角三角形的三邊之間的數(shù)量關(guān)系,會初步運用勾股定理進行簡單的計算和實際運用。
2、過程與方法
讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。進一步發(fā)展學生的說理和簡單推理的意識及能力;進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
3、情感態(tài)度與價值觀
教學重點:
了結(jié)勾股定理的由,并能用它解決一些簡單的問題。
教學難點:
勾股定理的發(fā)現(xiàn)
教學準備:
多媒體
教學過程:
第一環(huán)節(jié):創(chuàng)設情境,引入新(3分鐘,學生觀察、欣賞)
內(nèi)容:2002年世界數(shù)學家大會在我國北京召開,
投影顯示本屆世界數(shù)學家大會的會標:
會標中央的圖案是一個與“勾股定理”有關(guān)的圖形,數(shù)學家曾建議用“勾股定理”
的圖作為與“外星人”聯(lián)系的信號。今天我們就一同探索勾股定理。(板書題)
第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理(15分鐘,學生獨立觀察,自主探究)
1、探究活動一:
內(nèi)容:(1)投影顯示如下地板磚示意圖,讓學生初步觀察:
。2)引導學生從面積角度觀察圖形:
學生通過觀察,歸納發(fā)現(xiàn):
結(jié)論1以等腰直角三角形兩直角邊為邊長的.小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
2、探究活動二:
由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
(1)觀察下面兩幅圖:
。2)填表:
A的面積
。▎挝幻娣e)B的面積
。▎挝幻娣e)C的面積
。▎挝幻娣e)
左圖
右圖
。3)你是怎樣得到正方形C的面積的?與同伴交流。(學生可能會做出多種方法,教師應給予充分肯定。)
(4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?
學生通過分析數(shù)據(jù),歸納出:
結(jié)論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
3、議一議:
內(nèi)容:
。1)你能用直角三角形的邊長、表示上圖中正方形的面積嗎?
。2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?
(3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的長度。2中發(fā)現(xiàn)的規(guī)律對這個三角形仍然成立嗎?
勾股定理(gou-gutheorem):
如果直角三角形兩直角邊長分別為、,斜邊長為,那么即直角三角形兩直角邊的平方和等于斜邊的平方。
數(shù)學小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名。
第三環(huán)節(jié):勾股定理的簡單應用(7分鐘,學生合作探究)
內(nèi)容:
例如圖所示,一棵大樹在一次強烈臺風中于離
地面10m處折斷倒下,
樹頂落在離樹根24m處.大樹在折斷之前高多少?
。ń處煱逖萁忸}過程)
第四環(huán)節(jié):鞏固練習(10分鐘,學生先獨立完成,后全班交流)
1、列圖形中未知正方形的面積或未知邊的長度:
2、生活中的應用:
小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?你能解釋這是為什么嗎?
第五環(huán)節(jié):堂小結(jié)(3分鐘,師生對答,共同總結(jié))
內(nèi)容:教師提問:
1、這一節(jié)我們一起學習了哪些知識和思想方法?
2、對這些內(nèi)容你有什么體會?請與你的同伴交流。
在學生自由發(fā)言的基礎上,師生共同總結(jié):
1、知識:勾股定理:如果直角三角形兩直角邊長分別為a、b,斜邊長為c,那么.
2、方法:
、儆^察—探索—猜想—驗證—歸納—應用;
、诿娣e法;
、邸案睢⒀a、拼、接”法.
3、思想:
、偬厥狻话恪厥猓
、跀(shù)形結(jié)合思想。
第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
內(nèi)容:
作業(yè):1、教科書習題1.1;
2、《讀一讀》——勾股世界;
3、觀察下圖,探究圖中三角形的三邊長是否滿足.
要求:A組(學優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
冀教版《勾股定理》優(yōu)秀教案 3
教學目標
1、知識與技能目標
學會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學生的空間觀念。
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想。
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學習數(shù)學的興趣。
(2)在解決實際問題的過程中,體驗數(shù)學學習的實用性。
教學重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
教學難點:
利用數(shù)學中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。
教學準備:
多媒體
教學過程:
第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)
情景:
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)
學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算。
學生匯總了四種方案:
。ǎ保ǎ玻3)(4)
學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短。
學生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短。
如圖:
。ǎ保┲蠥→B的路線長為:AA’+d;
。ǎ玻┲蠥→B的路線長為:AA’+A’B>AB;
。ǎ常┲蠥→B的路線長為:AO+OB>AB;
(4)中A→B的.路線長為:AB.
得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題。在這個環(huán)節(jié)中,可讓學生沿母線剪開圓柱體,具體觀察。接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環(huán)節(jié):做一做(7分鐘,學生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
。1)你能替他想辦法完成任務嗎?
(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)
1、甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走。上午10:00,甲、乙兩人相距多遠?
2、如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離。
3、有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:
1、如何利用勾股定理及逆定理解決最短路程問題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
內(nèi)容:
作業(yè):1。課本習題1.5第1,2,3題。
要求:A組(學優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
冀教版《勾股定理》優(yōu)秀教案 4
教學目標:
1、知識目標:
。1)掌握勾股定理;
。2)學會利用勾股定理進行計算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史.
2、能力目標:
。1)在定理的證明中培養(yǎng)學生的拼圖能力;
(2)通過問題的解決,提高學生的運算能力
3、情感目標:
。1)通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;
。2)通過有關(guān)勾股定理的歷史講解,對學生進行德育教育。
教學重點:
勾股定理及其應用
教學難點:
通過有關(guān)勾股定理的歷史講解,對學生進行德育教育
教學用具:
直尺,微機
教學方法:
以學生為主體的討論探索法
教學過程:
1、新課背景知識復習
。1)三角形的三邊關(guān)系
。2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學生用文字語言將上述問題表述出來。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方
強調(diào)說明:
(1)勾最短的邊、股較長的直角邊、弦斜邊
。2)學生根據(jù)上述學習,提出自己的問題(待定)
學習完一個重要知識點,給學生留有一定的時間和機會,提出問題,然后大家共同分析討論。
3、定理的證明方法
方法一:將四個全等的直角三角形拼成如圖1所示的正方形.
方法二:將四個全等的直角三角形拼成如圖2所示的正方形,
方法三:“總統(tǒng)”法.如圖所示將兩個直角三角形拼成直角梯形
以上證明方法都由學生先分組討論獲得,教師只做指導.最后總結(jié)說明
4、定理與逆定理的應用
例1已知:如圖,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的長.
解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴∠2=∠C
又
∴
∴CD的長是2.4cm
例2如圖,△ABC中,AB=AC,∠BAC=,D是BC上任一點,
求證:
證法一:過點A作AE⊥BC于E
則在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
證法二:過點D作DE⊥AB于E,DF⊥AC于F
則DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,F(xiàn)D=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3設
求證:
證明:構(gòu)造一個邊長的矩形ABCD,如圖
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4國家電力總公司為了改善農(nóng)村用電電費過高的現(xiàn)狀,目前正在全國各地農(nóng)村進行電網(wǎng)改造,某村六組有四個村莊A、B、C、D正好位于一個正方形的四個頂點,現(xiàn)計劃在四個村莊聯(lián)合架設一條線路,他們設計了四種架設方案,如圖實線部分。請你幫助計算一下,哪種架設方案最省電線。
解:不妨設正方形的'邊長為1,則圖1、圖2中的總線路長分別為
AD+AB+BC=3,AB+BC+CD=3
圖3中,在Rt△DGF中
同理
∴圖3中的路線長為
圖4中,延長EF交BC于H,則FH⊥BC,BH=CH
由∠FBH=及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此圖中總線路的長為4EA+EF=
∵3>2.828>2.732
∴圖4的連接線路最短,即圖4的架設方案最省電線。
5、課堂小結(jié):
。1)勾股定理的內(nèi)容
。2)勾股定理的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè):
a、書面作業(yè)P130#1、2、3
b、上交作業(yè)P132#1、3
板書設計:
探究活動
臺風是一種自然災害,它以臺風中心為圓心在周圍數(shù)十千米范圍內(nèi)形成氣旋風暴,有極強的破壞力,如圖,據(jù)氣象觀測,距沿海某城市A的正南方向220千米B處有一臺風中心,其中心最大風力為12級,每遠離臺風中心20千米,風力就會減弱一級,該臺風中心現(xiàn)正以15千米/時的速度沿北偏東方向往C移動,且臺風中心風力不變,若城市所受風力達到或走過四級,則稱為受臺風影響
。1)該城市是否會受到這交臺風的影響?請說明理由
。2)若會受到臺風影響,那么臺風影響該城市持續(xù)時間有多少?
。3)該城市受到臺風影響的最大風力為幾級?
解:
。1)由點A作AD⊥BC于D,
則AD就為城市A距臺風中心的最短距離
在Rt△ABD中,∠B=,AB=220
∴
由題意知,當A點距臺風(12-4)20=160(千米)時,將會受到臺風影響。
故該城市會受到這次臺風的影響。
。2)由題意知,當A點距臺風中心不超過60千米時,
將會受到臺風的影響,則AE=AF=160。當臺風中心從E到F處時,該城市都會受到這次臺風的影響。
由勾股定理得
∴EF=2DE=
因為這次臺風中心以15千米/時的速度移動
所以這次臺風影響該城市的持續(xù)時間為小時
。3)當臺風中心位于D處時,A城市所受這次臺風的風力最大,其最大風力為級。
冀教版《勾股定理》優(yōu)秀教案 5
[設計背景]
新課改下的數(shù)學教學要求“抓住數(shù)學本質(zhì)、展示思維過程、落實主體地位”。根據(jù)這種課改精神,再來設計這節(jié)市級公開課的內(nèi)容,我認為首先要培養(yǎng)學生的數(shù)學建模思想,讓學生經(jīng)歷“問題情景—建立模型—解釋應用與拓展”的過程,將實際問題轉(zhuǎn)化為數(shù)學問題,進而歸類為在直角三角形中利用勾股定理求線段長度的問題。對問題的選擇也應盡可能是學生感興趣和熟悉的。通過問題串來引導學生自己找到解決的方法,并且及時歸納總結(jié)方法,同時注意通過題組訓練來鞏固對思想方法的內(nèi)化運用。為了培養(yǎng)學生的學習興趣和探究意識,要給學生留有足夠時間和空間來動手操作、小組交流、獨立思考,同時還要多給學生展示自己數(shù)學潛質(zhì)的機會。
[教學過程]
一、教學目標
知識與技能:能進一步運用勾股定理解決簡單的實際問題。
過程與方法:在解決簡單的實際問題中,感受數(shù)學建模、轉(zhuǎn)化的思想方法。
情感態(tài)度與價值觀:讓學生主動參與解決問題的過程,體會數(shù)學的應用價值。
二、教學重點和難點
重點:構(gòu)造直角三角形,運用勾股定理解決問題。
難點:根據(jù)已知和未知的關(guān)系,建構(gòu)方程,解決實際問題。
三、教學方法和手段
主要采用啟發(fā)引導、合作交流、演示反饋等教學方法,運用多媒體輔助教學。
四、教學過程
活動一:
1.情境引入
有一個圓柱狀的透明玻璃杯,由內(nèi)部測得其底部半徑為3 cm,高為8 cm,今有一支12 cm長的吸管隨意放在杯中。如果不考慮吸管的粗細,那么吸管露出杯口外的長度至少為 cm。
2.學生活動
用下面兩個問題引導學生活動:
。1)你是怎樣解決這個問題的?
。2)找出直角三角形后下一步應怎么辦?
3.數(shù)學建構(gòu)(初步)
(1)找出直角三角形;
。2)運用勾股定理求線段的長度。
設計意圖:從學生感興趣的情境入手,調(diào)動學生的積極性,讓學生初步感知本節(jié)課所要學習的內(nèi)容,從而引入課題。
活動二:
1.例題教學
如圖,一架長10 m的梯子AB斜靠在墻上。梯子的頂端距地面的垂直距離為8 m,如果梯子的頂端下滑1 m,那么它的底端是否也滑動1 m?
■
。1)學生思考交流解題思路,教師規(guī)范解題格式。
。2)變式:如果梯子的頂端下滑2 m,那么它的底端下滑了多少呢?(學生來完成并總結(jié)解題思路)
設計意圖:通過例題教學,引導學生分析如何將所求的線段轉(zhuǎn)化在直角三角形中利用勾股定理來解決。通過教師的規(guī)范板書,讓學生明確解題的書寫格式。
2.建構(gòu)數(shù)學
。1)實際問題數(shù)學問題構(gòu)造直角三角形運用勾股定理解決線段長度計算問題解決數(shù)學問題解決實際問題。
。2)實際問題數(shù)學問題解決數(shù)學問題解決實際問題。
設計意圖:數(shù)學建模思想是數(shù)學中的一種重要思想方法,及時地歸納總結(jié),讓學生領會這種思想方法,對于自己數(shù)學學習是很有幫助的。
3.數(shù)學應用
。1)有兩棵樹,一棵高8 m,另一棵高2 m,兩樹相距8 m,一只小鳥從一棵樹的樹梢飛到另一棵樹的樹梢,至少飛了多少m?
。2)如圖,圓柱的高為5 cm,底面周長為2 cm,在圓柱下底面有一只螞蟻,它從點A出發(fā),沿著圓柱的表面爬行到對面的點B,它爬行的最短路程是 cm。
設計意圖:這兩題的設計主要是讓學生嘗試構(gòu)造直角三角形。第一題實際是把一個直角三角形的問題轉(zhuǎn)化為一個矩形和一個直角三角形。而第二題的目的是為了讓學生明白要研究立體圖形的表面問題,就要將立體圖形的表面展開,轉(zhuǎn)化為平面圖形來研究。這兩題都涉及了初一所學的“兩點之間線段最短”,豐富了問題的研究性和趣味性。
活動三:
1.拓展延伸
在一次地震中,一棵20米高的大樹被折斷了,地震過后,測量了有關(guān)數(shù)據(jù),測得樹梢著地點到樹根的距離為6米。這棵大樹折斷處離地面有多高?
設計意圖:本題是把實際問題轉(zhuǎn)化為數(shù)學問題,構(gòu)造出直角三角形。已知直角三角形的一邊和另外兩邊的和。引導學生通過設未知數(shù),根據(jù)勾股定理這個等量關(guān)系列出方程,滲透方程思想,進而求出未知線段的長度。
2.回顧反思
師生共同總結(jié)應用勾股定理解決簡單實際問題的方法。
活動四:
1.當堂反饋
。1)校園里有一塊長方形的草地,長4 m,寬3 m,草地旁有路,但有個別同學偶爾會走“近路”,從草地上走。經(jīng)過計算我們會發(fā)現(xiàn)這樣只是少走 步而已(假如兩步合1 m)。
設計意圖:此題的設計一方面是為了簡單地利用勾股定理,另一方面是為了讓學生有一個愛護花草樹木的習慣,注意自己的舉止文明,滲透德育教學。
。2)已知,在ABC中,∠C=90°,AC=5 cm,BC=10 cm,將ABC折疊,使點B與點A重合,折痕為DE。求CD的長度。
■
設計意圖:此題的設計是檢測折疊和利用勾股定理列方程的知識的運用。
2.布置作業(yè)
課本第68頁第4、5題,第7頁第14題。
設計意圖:作業(yè)主要是為了鞏固本節(jié)課所學知識,最后一題是為了讓學生探索研究在立體圖形中構(gòu)造出兩個直角三角形,利用勾股定理求出線段的長度。
[教學反思]
一、增強應用意識,滲透數(shù)學建模思想
數(shù)學與現(xiàn)實生活密不可分,數(shù)學無時不在我們身邊,正如一位數(shù)學教育家所說:“數(shù)學是現(xiàn)實的,學生在現(xiàn)實生活中學習數(shù)學,再把學習的數(shù)學應用到現(xiàn)實中去!睆默F(xiàn)實中尋找學習的素材,增強應用數(shù)學的意識,使學生感受數(shù)學就在我身邊。本節(jié)課所選取的問題背景都是學生熟悉的情景,讓學生體驗解決身邊問題的全過程,自己去研究探索,經(jīng)歷數(shù)學建模過程,提高應用數(shù)學的意識和用數(shù)學解決實際問題的能力。
二、學會分析比只會解答更有效
《義務教育數(shù)學課程標準》要求:能通過觀察、實驗、類比等獲得數(shù)學猜想,進一步尋求證據(jù)、給出證明或舉出反例;能清晰、有條理地表達自己的思考過程,做到言之有據(jù);在與他人交流的`過程中,能運用數(shù)學語言合乎邏輯地進行討論與質(zhì)疑。
畢達哥拉斯曾說過:在數(shù)學的天地里,重要的不是我們知道什么,而是我們怎么知道什么?梢姺治鰡栴}能力的培養(yǎng)是多么重要。問題出示后,給學生足夠的思考時間,適當采用合作交流的輔助方式,然后組織學生在課堂中交流自己的思考歷程,并安排其他學生質(zhì)疑與補充。這些措施的落實,能進一步拓寬學生分析問題能力的空間,提升學生的思維水平和思維層次。
三、恰當評價,呵護學生的學習熱情
要徹底解決學生在教學中的主體地位。教師必須轉(zhuǎn)變觀念以學生的“學”為出發(fā)點,將“自主探究、合作交流”的學習方式貫穿于課的始終,并將評價與教師的教和學生的學有機地融為一體。教師以一個參與者的身份積極參與交流與評價,可以為學生大膽探索、積極交流,創(chuàng)設寬松的心理環(huán)境,營造民主、平等、和諧的課堂氣氛。在我的課堂上學生經(jīng)常是妙語連珠,積極發(fā)言,有時說錯了,只要加以引導都能開心坐下來。學生學習的熱情需要呵護。恰當?shù)剡\用評價的激勵與促進作用,可以充分激發(fā)和調(diào)動學生學習的積極性和主動性,進而獲得理想的教學效果。
冀教版《勾股定理》優(yōu)秀教案 6
教學目標
知識與技能:
了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
教學過程
1、創(chuàng)設情境
問題1國際數(shù)學家大會是最高水平的全球性數(shù)學學科學術(shù)會議,被譽為數(shù)學界的“奧運會”。2002年在北京召開了第24屆國際數(shù)學家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學習過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學習,就能理解會徽圖案的含義。
設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學中關(guān)于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界
問題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應了直角三角形三邊的某種數(shù)量關(guān)系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?
師生活動:學生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學生的`討論
追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?
師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結(jié)論
問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。
冀教版《勾股定理》優(yōu)秀教案 7
一、教學設計理念
隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學課已不僅是一些數(shù)學知識的學習,更重要的是體現(xiàn)知識的認知發(fā)展過程。教育的目的是培養(yǎng)具有獨立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應該是學生最大限度參與的課。《數(shù)學課程標準》中指出學生的數(shù)學學習應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學生主動進行觀察、實驗、猜想、驗證、推理與交流。內(nèi)容的呈現(xiàn)應采取不同的表達方式,以滿足多樣化的學習需求。數(shù)學活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。
二、教材、學情分析與處理
本節(jié)知識是在學生掌握了直角三角形的三個性質(zhì):直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎上展開的。勾股定理是直角三角形的一個非常重要的性質(zhì),它揭示了一個直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個幾何學習,更是數(shù)形結(jié)合的重要典范。更重要的是學生在探索定理的過程中,無論是課前準備和課上交流以及課下活動都讓學生充分感受到學習、思考的重要性,與人合作的重要性以及數(shù)學在實際生活中的重要作用,是進行愛國教育的重要題材!
本節(jié)課的教育對象是初二下的學生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學學習習慣。
三、教學目標
(一)知識與技能目標:
1、掌握勾股定理及其證明
2、會利用勾股定理進行直角三角形的簡單計算。
3、了解有關(guān)勾股定理的歷史知識
(二)過程與方法目標
經(jīng)歷課前預習和課上觀察、分析、歸納、猜想、驗證并運用實踐的過程,了解數(shù)學知識的生成與發(fā)展過程。通過了解勾股定理的幾個著名證法(趙爽證法、歐幾里得證法等),使學生感受數(shù)學證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學生自主學習能力和分析問題解決問題的能力得到提高。培養(yǎng)與人合作的意識。
(三)情感、態(tài)度和價值觀
1、通過自主學習培養(yǎng)學生探究、發(fā)現(xiàn)問題的能力,體驗獲取數(shù)學知識的過程。
2、通過小組合作、探索培養(yǎng)學生的團隊精神,以及不畏艱難,實事求是的學習態(tài)度和嚴謹?shù)臄?shù)學學習習慣。
3、通過了解有關(guān)勾股定理的中西歷史知識,激發(fā)學生的愛國熱情,培養(yǎng)學生的民族自豪感。
四、教學重點、難點
本節(jié)課在教材處理上,先讓學生帶著三個問題預習完成網(wǎng)上作業(yè),自制4個兩條直角邊不等的全等的直角三角形,準備一張坐標紙。從而初步了解勾股定理的歷史和內(nèi)容以及證法,并制作成課件或打印資料,為課上活動做了充分的準備。為突破本課重、難點起到了至關(guān)重要的作用。勾股定理這部分內(nèi)容共計兩課時,本節(jié)課是第一課時。教學重點定位為勾股定理的探索過程及簡單應用。教學難點是勾股定理的證明。把勾股定理的應用放在第二課時進行專題訓練。
五、教法、學法及教學手段
自主探索、合作交流、引導點撥
六、教學流程
(一)創(chuàng)設情境,引入課題。(二)自主探索,獲得定理(三)獨立思考,應用定理(四)暢所欲言,歸納小結(jié)。
七、教學過程設計
《勾股定理》是人教版教材八年級數(shù)學(下)的內(nèi)容,第一課時的教學重點是讓學生經(jīng)歷勾股定理的探索和證明過程,了解勾股定理的背景知識,在學習知識的同時,感受勾股定理的`豐富文化內(nèi)涵,激發(fā)學生的學習興趣,對學生進行思想品德教育。
針對教材的任務要求,我是按照如下的教學流程進行的:
一.欣賞圖片引入新課,激發(fā)學生學習興趣
通過欣賞2002年在我國北京召開的國際數(shù)學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數(shù)學成就,引入課題。
接下來,讓學生欣賞傳說故事:相傳2500年前,畢達格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學生明白:科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結(jié)合起來。
這樣,一方面激發(fā)學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養(yǎng)。
二.動手探究,得出猜想
通過對地板圖形中的等腰直角三角形三邊關(guān)系到一般直角三角形中三邊關(guān)系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。
在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內(nèi)討論,然后在全班討論,盡量學習更多的方法。
三.動手實踐,得出定理
先了解趙爽的證明思路,然后讓學生利用學具自己動手剪拼,并利用圖形進行證明。
由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。
四.鞏固練習,拓展延伸
1.主要練習勾股定理的其它證明方法。
本節(jié)課上,對教材中的探究內(nèi)容,不但制作了多媒體課件,還讓每個學生都準備了探究圖形和拼圖紙板。在課堂上,學生通過自己嘗試探究、小組交流合作、集中成果展示等多種形式參與課堂活動,學生普遍參與,學習興趣深厚,參與活動的積極性很高,小組分工合作任務明確,課堂效果很好。學生在掌握了知識的同時,由于真正經(jīng)歷了探究的整個過程,對科學家敏銳的觀察力和勤于思考的作風理解頗深,并學到了一些新的探究方法,在思想上也受到了教育和啟迪。課堂教學目標順利完成,整個課堂絲毫沒有那種“熟課”學生不想上的痕跡。
2.學生用不同方法得出結(jié)論后,我又展示了如下習題對學生進行鞏固訓練:
(1)在△ABC中,∠C=90°。若a=6,b=8,則 c= 。
(2)在△ABC中,∠C=90°。若c=13,b=12,則 a= 。
(3)若直角三角形中,有兩邊長是3和4,則第三 邊長的平方為( )
A 25 B 14 C 7 D 7或25
3.之后又補充了如下稍難的題目進行拓展:
某樓發(fā)生火災,消防車立即趕到距大樓6米的地方搭建云梯,升起云梯到達火災窗口。已知云梯長10米,問發(fā)生火災的窗口距離地面多高?(不計消防車的高度)
通過這幾道題目的訓練學生已經(jīng)基本掌握了勾股定理。
五.反思歸納,總結(jié)升華
一是讓學生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識和方法)。
二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數(shù)學素養(yǎng),適時對大家進行思想教育。
通過本節(jié)課的教學,讓我更深刻地認識到:
1.新課改理念只有全面滲透到教育教學工作中,與平時工作緊密結(jié)合,才能夠促進學生的全面發(fā)展;
2.教師要充分利用課堂內(nèi)容為整體課程目標服務,不要僅限于本節(jié)課的知識目標與要求,就知識“教”知識,而要通過知識的學習獲得學習這些知識的方法,同時,還要充分利用課堂對學生進行情感態(tài)度價值觀的教育,真正讓教材成為教育學生的素材,而不是學科教學的全部;
3.要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現(xiàn)教育的本來目標,而且也一定能讓學生“考出”好的成績。
冀教版《勾股定理》優(yōu)秀教案 8
教學課題:
勾股定理的應用
教學時間
(日期、課時)
教材分析:
學情分析:
教 學目標:
能運用勾股定理及直角三角形的判定條件解決實際問題。
在運用勾股定理解決實際問題的過程中,感受數(shù)學的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學的應用價值。
教學準備
《數(shù)學學與練》
集體備課意見和主要參考資料
頁邊批注
教學過程
一、 新課導入
本課時的教學內(nèi)容是勾股定理在實際中的應用。除課本提供的情境外,教學中可以根據(jù)實際情況另行設計一些具體情境,也利用課本提供的素材組織數(shù)學活動。比如,把課本例2改編為開放式的問題情境:
一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑0.5m,你認為梯子的底端會發(fā)生什么變化?與同學交流 。
創(chuàng)設學生身邊的問題情境,為每一個學生提供探索的空間,有利于發(fā)揮學生的主體性;這樣的問題學生常常會從自己的`生活經(jīng)驗出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學中學生可能的結(jié)論有:底端也滑動 0.5m;如果梯子的頂端滑到地面 上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端 下滑0.5m,它的底端的滑動小于0.5m;構(gòu)造直角三角形,運用勾股定理計算梯子滑動前、后底端到墻的垂直距離的差,得出梯子底端滑動約0.61m的結(jié)論等);通過與同學交流,完善各自的想法,有利于學生主動地把實際問題轉(zhuǎn)化為數(shù)學問題 ,從中感受用數(shù)學的眼光審視客觀世界的樂趣 。
二、新課講授
問題一 在上面的情境中,如果梯子的頂端下滑 1m,那么梯子的底端滑動多少米?
組織學生嘗試用勾股定理解決問題,對有困難的學生教師給予及時的幫助和指導。
問題二 從上面所獲得的信息中,你對梯子下滑的變化過程有進一步的思考嗎?與同學交流。
設計問題二促使學生能主動積 極地從數(shù)學的角度思考實際問題。教學中學生可能會有多種思考、比如,①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;②因為梯子頂端 下滑到地面時,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;③由勾股數(shù)可知,當梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。教學中不要把尋找規(guī)律作為這個探索活動的目標,應讓學生進行充分的交流,使學生逐步學會運用數(shù)學的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗和方法、
3、例題教學
課本的例1是勾股定理的.簡單應用,教學中可根據(jù)教學的實際情況補充一些實際應用問題,把課本習題2.7第4題作為補充例題。通過這個問題的討論,把“32+b2=c2”看作一個方程,設折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學生感受數(shù)學的“轉(zhuǎn)化”思想,進一步了解勾股定理的悠久歷史和我國古代人民的聰明才智、
三、鞏固練習
1、甲、乙兩人同時從同一地點出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km。
2、如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程( 取3)是( )。
(A)20cm
。˙)10cm
。–)14cm
(D)無法確定
3、如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求這塊草坪的面積。
四、小結(jié)
我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角 三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊。從應用勾股定理解決實際問題中,我們進一步認識到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個方程,只要 依據(jù)問題的條件把它轉(zhuǎn)化為我們會解的方程,就把解實際問題轉(zhuǎn)化為解方程。
冀教版《勾股定理》優(yōu)秀教案 9
課題:
勾股定理
課型:
新授課
課時安排:
1課時
教學目的:
一、知識與技能目標理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
二、過程與方法目標通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
三、情感、態(tài)度與價值觀目標了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
教學重點:
引導學生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題
教學難點:
用面積法方法證明勾股定理
課前準備:
多媒體ppt,相關(guān)圖片
教學過程:
(一)情境導入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,2002年國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
2、多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學習了今天的這節(jié)課后,同學們就會有辦法解決了。
。ǘ⿲W習新課問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個正方形面積有何關(guān)系?相傳2500年前,畢達哥拉斯(古希臘著名的哲學家、數(shù)學家、天文學家)有一次在朋友家做客時,發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的.平方那么對于一般的直角三角形是否也有這樣的性質(zhì)呢?請大家畫一個任意的直角三角形,量一量,算一算。問題二是一般直角三角形的情形,判斷這時外圍三個正方形的面積是否也存在這種關(guān)系?通過這個觀察和驗算這個直角三角形外圍的三個正方形面積之間的關(guān)系,同學們發(fā)現(xiàn)了什么規(guī)律嗎?通過前面對兩個問題的驗證,可以得到勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。
。ㄈ╈柟叹毩
1、如果一個直角三角形的兩條邊長分別是6厘米和8厘米,那么這個三角形的周長是多少厘米?
2、解決課程開始時提出的情境問題。
。ㄋ模┬〗Y(jié)
1、背景知識介紹
、佟吨荀滤銖健分,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;
、诳滴鯏(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨創(chuàng)。
2、通過這節(jié)課的學習,你會寫方程了嗎?你有什么收獲和體會?
。ㄎ澹┳鳂I(yè)練習18.1中的1、2、3題。板書設計:勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。
冀教版《勾股定理》優(yōu)秀教案 10
教學 目標:
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學 重點:
分式通分的理解和掌握。
教學 難點:
分式通分中最簡公分母的確定。
教學 工具:
投影儀
教學 方法:
啟發(fā)式、討論式
教學 過程 :
。ㄒ唬┮
。1)如何計算:
由此讓學生復習分數(shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
。2)如何計算:
。3)何計算:
引導學生思考,猜想如何求解?
(二)新課
1、類比分數(shù)的.通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的 通分 .
注意:通分保證
。1)各分式與原分式相等;
。2)各分式分母相等。
2.通分的依據(jù):分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做 最簡公分母 .
根據(jù)分式通分和最簡公分母的定義,將分式xx ,xx,xx 通分:
最簡公分母為:xx ,然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當?shù)恼剑垢鞣质降姆帜付蓟癁閤x。通分如下:
通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。
例1 通分:
。1)xx,xx,xx ;
分析:讓學生找分式的公分母,可設問“分母的系數(shù)各不相同如何解決?”,依據(jù)分數(shù)的通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy 2
小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a 2 b 2 c 2
由學生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:
。1)取各分母系數(shù)的最小公倍數(shù);
(2)凡出現(xiàn)的字母為底的冪的因式都要。
。3)相同字母的冪的因式取指數(shù)最大的。
取這些因式的積就是最簡公分母。
冀教版《勾股定理》優(yōu)秀教案 11
【學習目標】
能運用勾股定理及直角三角形的判別條件解決簡單的實際問題.
【學習重點】
勾股定理及直角三角形的判別條件的運用.
【學習重點】
直角三角形模型的建立.
【學習過程】
一.課前復習
勾股定理及勾股定理逆定理的區(qū)別
二.新課學習
探究點一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題
1.3如圖,有一個圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,沿圓柱側(cè)面爬行的最短路程是多少?
思考:
1.利用學具,嘗試從A點到B點沿圓柱側(cè)面畫出幾條線路,你認為這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側(cè)面剪開展開成一個長方形,B點在什么位置?從A點到B點的最短路線是什么?你是如何畫的?
1.33.螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。
4.你是如何將這個實際問題轉(zhuǎn)化為數(shù)學問題的?
小結(jié):
你是如何解決圓柱體側(cè)面上兩點之間的最短距離問題的?
探究點二:利用勾股定理逆定理如何判斷兩線垂直?
1.31.31.3李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,
但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)
(1)你能替他想辦法完成任務嗎?
1.31.3(2)李叔叔量得AD的長是30cm,AB的長是40cm,BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個問題的?
。3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結(jié):通過本道例題的探索,判斷兩線垂直,你學會了什么方法?
探究點三:利用勾股定理的方程思想在實際問題中的應用
例圖1-14是一個滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長.已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長.
1.3
思考:
1.求滑道AC的長的問題可以轉(zhuǎn)化為什么數(shù)學問題?
2.你是如何解決這個問題的?寫出解答過程。
小結(jié):
方程思想是勾股定理中的重要思想,勾股定理反應的直角三角形三邊的關(guān)系正是構(gòu)建方程的基礎.
四.課堂小結(jié):本節(jié)課你學到了什么?
三.新知應用
1.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
1.3
2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦?shù)拈L度是()
1.3
五.作業(yè)布置:習題1.41,3,4題
【反思】
一、教師我的體會:
①、我根據(jù)學生實際情況認真?zhèn)湔n這節(jié)課,書本總共兩個例題,且兩個例題都很難,如果一節(jié)課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。
把教材讀薄,
②、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數(shù)學語言轉(zhuǎn)換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的數(shù)學,樂于學習數(shù)學。
、、新課選用的例子、練習,都是經(jīng)過精心挑選的,運用性強,貼近生活,與生活實際緊密聯(lián)系,既達到學習、鞏固新知識的.目的,同時,又充分展現(xiàn)出數(shù)學教學的重大特征:數(shù)學源于生活實際,又服務于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務。
、堋⑹褂枚嗝襟w進行教學,使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。
二、學生體會:
課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應用時,我覺得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數(shù)學課上有自主學習的機會,有相互之間的討論、爭辯等協(xié)作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應用中我覺得圖形很美,古代的數(shù)學家已經(jīng)有了很好的研究并作出了很大的貢獻,現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時在課堂中漸漸地培養(yǎng)了我們的數(shù)學興趣和一定的思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發(fā)展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學習的主人。數(shù)學課堂里充滿了智慧。
冀教版《勾股定理》優(yōu)秀教案 12
一、 教學目標設置
知識與技能:
1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。
2、了解勾股定理的內(nèi)容。
3、能利用已知兩邊求直角三角形另一邊的長。
過程與方法:
1、通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。
2、在探索活動中,學會與人合作,并能與他人交流思維的過程和探索的結(jié)果。
情感與態(tài)度:
1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數(shù)學家關(guān)于勾股定理的研究,激發(fā)學生熱愛祖國悠久文化的情感,激勵學生奮發(fā)學習。
2、在探索勾股定理的過程中,體驗獲得結(jié)論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。
二 教學重、難點
重點:探索和證明勾股定理 難點:用拼圖方法證明勾股定理
三、學情分析
學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。
四、教學策略
本節(jié)課采用探究發(fā)現(xiàn)式教學,由淺入深,由特殊到一般地提出問題,鼓勵學生采用觀察分析、自主探索、合作交流的學習方法,讓學生經(jīng)歷數(shù)學知識的形成與應用過程。
五、教學過程
教學環(huán)節(jié)
教學內(nèi)容
活動和意圖
創(chuàng)設情境導入新課
以“航天員在太空中遇到外星人時,用什么語言進行溝通”導入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進行和外星人溝通,為什么呢?通過一段VCR說明原因。
[設計意圖]激發(fā)學生對勾股定理的興趣,從而較自然的引入課題。
新知探究
畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。
(1)同學們,請你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?
(2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?
通過講述故事來進一步激發(fā)學生學習興趣,使學生在不知不覺中進入學習的最佳狀態(tài)。
如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計算正方形A、B、C面積?
(2)怎樣求出正方形面積C?
(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形A,B,C分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
引導學生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.
問題是思維的起點”,通過層層設問,引導學生發(fā)現(xiàn)新知。
探究交流歸納
拼圖驗證加深理解
如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計算正方形P、Q、R的.面積?
(2)怎樣求出正方形面積R?
(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形P,Q,R分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
由以上兩問題可得猜想:
直角三角形兩直角邊的平方和等于斜邊的平方。
而猜想要通過證明才能成為定理
活動探究:
(1)讓學生利用學具進行拼圖
(2)多媒體課件展示拼圖過程及證明過程理解數(shù)學的嚴密性。
從特殊的等腰直角三角形過渡到一般的直角三角形。
滲透從特殊到一般的數(shù)學思想.為學生提供參與數(shù)學活動的時間和空間,發(fā)揮學生的主體作用;培養(yǎng)學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。
通過這些實際操作,學生進行一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認識,也為論證勾股定理做好準備。
利用分組討論,加強合作意識。
1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。
2、加強數(shù)學嚴密教育,從而更好地理解代數(shù)與圖形相結(jié)合
應用新知解決問題
在應用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。
把生活中的實物抽象成幾何圖形,讓學生了解豐富變幻的圖形世界,培養(yǎng)了學生抽象思維能力,特別注重培養(yǎng)學生認識事物,探索問題,解決實際的能力。
回顧小結(jié)整體感知
在最后的小結(jié)中,不但對知識進行小結(jié)更對方法要進行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達哥拉斯樹,讓學生切身感受到其實數(shù)學與生活是緊密聯(lián)系的,進一步發(fā)現(xiàn)數(shù)學的另一種美。
學生通過對學習過程的小結(jié),領會其中的數(shù)學思想方法;通過梳理所學內(nèi)容,形成完整知識結(jié)構(gòu),培養(yǎng)歸納概括能力。
布置作業(yè)鞏固加深
必做題:
1. 完成課本習題1, 2,3題。
2. 如圖,分別以直角三角形的三邊為直徑作三個半圓,這三個半圓之間面積有何關(guān)系?為什么?
選做題:
3. 課后收集勾股定理的證明方法,下節(jié)課展示。
針對學生認知的差異設計了有層次的作業(yè)題,既使學生鞏固知識,形成技能,讓感興趣的學生課后探索,感受數(shù)學證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
冀教版《勾股定理》優(yōu)秀教案 13
教學內(nèi)容
人教版八年級下冊18.1《勾股定理》第一課時
教材分析
勾股定理是在學生已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎上進行學習的。本節(jié)課的學習在教材中起到承上啟下的作用,為下面學習勾股定理的逆定理作了鋪墊,為以后學習“四邊形”和“解直角三角形”奠定基礎。
勾股定理的探索和證明蘊含著豐富的數(shù)學思想和科學研究方法,是培養(yǎng)學生具有良好思維品質(zhì)的載體,它在數(shù)學的發(fā)展過程中起著重要的作用。勾股定理是數(shù)與形結(jié)合的優(yōu)美典范。
教學目標
一、了解勾股定理的文化背景,經(jīng)歷探索發(fā)現(xiàn)并驗證勾股定理的過程。
二、在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。
三、通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。在探究活動中,學會與人合作,并在與他人交流中獲取探究結(jié)果。
四、通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習熱情。在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學生的合作交流意識和探索精神。
教學重點及難點
重點:經(jīng)歷探索及驗證勾股定理的過程。
難點:用拼圖的方法證明勾股定理。
學具準備:
方格紙、全等的直角三角形紙片。
教法與學法
教法:在教學中要力求實現(xiàn)以教師為主導,以學生為主體,以知識為載體,以培養(yǎng)學生的“思維能力,動手能力,探究能力”為重點的教學思想。盡量為學生創(chuàng)設“做數(shù)學、玩數(shù)學”的情境,讓學生從“學會”到“會學”,使學生真正成為學習的主人。
學法:在探索勾股定理時,主要通過直觀的,樂于接受的拼圖法去驗證勾股定理。在本節(jié)課中,要充分體現(xiàn)學生的主體地位,主要采用小組合作、自主探究式學習模式。通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。在探究活動中,學會與人合作,并在與他人交流中獲取探究結(jié)果。
教學過程
一、設置懸念,引出課題
師:請同學們觀看大屏幕。
酷6網(wǎng)上曾經(jīng)出現(xiàn)一個報道:人類一直想弄清楚其他星球上是否存在“人”,我們怎樣才能與“外星人”取得聯(lián)系呢?
為什么我國科學家向太空發(fā)射勾股圖試圖與外星人溝通?這個圖形蘊含怎樣的秘密?
師:2002年國際數(shù)學家大會在北京召開。為什么把這個圖案作為2002年在北京召開第24屆國際數(shù)學家大會會徽?這個圖案蘊含著怎樣博大精深的知識呢?這就是我們這節(jié)課要解決的課題。
板書課題《勾股定理》
二、畫圖實踐,大膽猜想
1.活動一:畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的`某種數(shù)量關(guān)系。
師:同學們,請你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?
地面 圖18.1-1
師:你能找出圖18.1-1中正方形A、B、C面積之間的關(guān)系嗎?
生:S+S=S
CAB
師:圖中正方形A、B、C所圍等腰直角三角形三邊之間有什么特殊關(guān)系?
生:兩直角邊的平方和等于斜邊的平方。
師:是否其余的直角三角形也有這個性質(zhì)呢?
學生們思考。
2.活動二:在方格紙上,畫一個頂點都在格點上的直角三角形;并分別以這個直角三角形的各邊為一邊向三角形外作正方形,思考以下問題:
。1)三個正方形面積有何關(guān)系?
(2)直角三角形三邊長有何關(guān)系?
。3)依據(jù)活動一和活動二,請大膽提出你的猜想。
學生思考并回答給出的問題。
師:是否任意直角三角形三邊都滿足此關(guān)系?
222 () abc
由學生歸納,得出命題:如果直角三角形的兩直角邊長分別為、,斜邊長為,那bac222么
abc
師:這是個真命題嗎?我們來探究一下。
三、動手拼圖,定理證明
活動三:現(xiàn)有四個全等的直角三角形,兩直角邊為、,斜邊為,請同學們動手拼bac一拼。
1.請用盡可能多的方法拼成一個正方形;
2222.請從你拼的圖形中驗證; abc
教師巡回指導。
3.學生小組代表通過投影上臺展示探究結(jié)論。
師:你還有別的方法來驗證這個結(jié)論嗎?(請把你探究報告中了解的方法與大家一起分享)
師生共同對幾種拼法總結(jié)交流。
4.介紹趙爽關(guān)于勾股定理的證明和美國總統(tǒng)證法。
四、探古博今,感知勾股
1.師:被證明為正確的命題稱為定理
222勾股定理:如果直角三角形的兩直角邊長分別為、,斜邊長為,那么。 babcac2.師:我們來看一下,古代數(shù)學家是怎么研究這個定理的。
。1)介紹古希臘畢達哥拉斯。
。2)介紹我國古代勾股定理的證明。
。3)介紹國內(nèi)外關(guān)于勾股定理的應用。
五、學以致用,體會美境
課件展示練習:
1.求下圖中字母所代表的正方形的面積。
2.求下列圖中表示邊的未知數(shù)x、y的值。
3.如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方2形的邊長為7cm,則正方形A,B,C,D的面積之和為__ _cm。
4.教師用幾何畫板演示運動的勾股樹。
六、總結(jié)升華,完善報告
師:通過本節(jié)課的學習,大家有什么收獲?有什么疑問?你還有什么想要繼續(xù)探索的問題?
師:牛頓——從蘋果落地最終確立了萬有引力定律
我們——從朝夕相處的三角板發(fā)現(xiàn)了勾股定理
雖然兩者尚不可同日而語
但探索和發(fā)現(xiàn)的價值,也許就在身邊。
也許就在眼前——
還隱藏著無窮的“萬有引力定律”和“勾股定理”……
祝愿你們——
修得一個用數(shù)學思維思考世界的頭腦
練就一雙用數(shù)學視角觀察世界的眼睛
開啟新的探索——
發(fā)現(xiàn)平凡中的不平凡之謎……
3.作業(yè):
把今天數(shù)學課的感受寫進探究報告中,并發(fā)揮你的聰明才智,去探索、研究勾股定理,你又有什么新的發(fā)現(xiàn)?
板書設計
18.1勾股定理
S+S=S 在直角三角形中,兩直角邊的平方和等于斜邊的平方
CAB
教學反思
本節(jié)課以“問題情境——大膽猜想——動手操作——實踐驗證——學以致用——總結(jié)升華”為主線,使學生親身體驗勾股定理的探索和驗證過程,努力做到由傳統(tǒng)的數(shù)學課堂向?qū)嶒炚n堂轉(zhuǎn)變。
根據(jù)教材的特點,本節(jié)課把學生的探索和驗證活動放在首位,一方面要求學生在老師的引導下自主探索,合作交流,另一方面要求學生對探究過程中用到的數(shù)學思想方法有一定的領悟和認識,達到培養(yǎng)能力的目的。
教學中以教師為主導,以學生為主體,以知識為載體,以培養(yǎng)能力為重點。為學生創(chuàng)設“做數(shù)學、玩數(shù)學”的教學情境,讓學生從“學會”到“會學”,從“會學”到“樂學”。
這一課的學習通過讓學生自主地探索知識,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習。這堂課將信息技術(shù)融入利于創(chuàng)設教學環(huán)境,教學模式將從以教師講授為主轉(zhuǎn)為以學生動腦動手自主研究、小組學習討論交流為主,把數(shù)學課堂轉(zhuǎn)為“數(shù)學實驗室”,學生通過自己的活動得出結(jié)論、使創(chuàng)新精神與實踐能力得到了發(fā)展。
冀教版《勾股定理》優(yōu)秀教案 14
一、教材分析
勾股定理是直角三角形的一條非常重要的性質(zhì),也是幾何中最重要的定理之一,它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,主要用于解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”是這本書所體現(xiàn)的主要思想,教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
二、學習目標與任務
1、學習目標描述(知識與技能、過程與方法、情感態(tài)度與價值觀)
(1)知識與技能目標:理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
。2)過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
(3)情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
2、學習內(nèi)容與學習任務說明(學習內(nèi)容的選擇、學習形式的確定、學習結(jié)果的描述、學習重點及難點的分析)
學習內(nèi)容:勾股定理的證明和運用
學習形式:課堂教學,小組合作
學習結(jié)果:學生能夠掌握勾股定理的證明并熟練運用勾股定理解決相關(guān)問題
學習難點:用面積法方法證明勾股定理。
學習重點:引導學生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的.實際問題。
3、問題設計(能激發(fā)學生在教學活動中思考所學內(nèi)容的問題)
。1)圖中三個三角形有什么關(guān)系?
。2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
三、學習者特征分析(說明學生的學習特點、學習習慣、學習交往特點等)
(1)學習特點:易受外界影響﹑情緒情感偏激﹑情緒兩極波動﹑憑感情行事,但同時又具有可塑性大﹑主動嘗試的特點,八年級的學生是成長發(fā)展的轉(zhuǎn)折點,也是教育的關(guān)鍵期。
。2)學習習慣:八年級是初中生活開始分化的時期,經(jīng)過一年多新課程理念的熏陶和實踐,學生已經(jīng)有了初步自主學習和合作探究的能力。
。3)學習交往特點:經(jīng)過一年的學習生活,環(huán)境熟悉了,人也熟悉了,但部分同學還是羞于表現(xiàn)但又渴望得到肯定。
四、學習環(huán)境選擇與學習資源設計
1、學習環(huán)境選擇(打√)
校園網(wǎng)√
因特網(wǎng)
手機
2、學習資源類型(打√)
(1)課件√
。2)工具
(3)專題學習網(wǎng)站
。4)多媒體資源庫
(5)案例庫
。6)題庫
。7)網(wǎng)絡課程
。8)寧夏教育云平臺
。9)其他
3、學習資源內(nèi)容簡要說明(說明名稱、網(wǎng)址、主要內(nèi)容)
五、學習情境創(chuàng)設
1、學習情境類型(打√)
(1)真實情境√
。2)問題性情境√
。3)虛擬情境
。4)其他
2、學習情境設計
通過真實的教學情境,讓學生能夠真實感受課堂氛圍,通過提問,來激發(fā)學生的思考和想象,引導學生對新課程內(nèi)容進行探究,加深學生的理解和記憶。
六、學習活動組織
1、自主學習設計
類型
相應內(nèi)容
使用資源
學生活動
教師活動
自主觀察
圖片
課件
觀察圖片
播放圖片
自主探究
回答問題
課件
討論并回答啊問題
提出問題
2、協(xié)作學習設計
類型
相應內(nèi)容
使用資源
學生活動
教師活動
。1)伙伴
小組討論
課件
討論探究
提出問題并引導
(2)協(xié)同
。3)辯論
(4)角色扮演
。5)其他
3、教學結(jié)構(gòu)流程的設計
通過圖片導入課程——提出問題引入勾股定理新內(nèi)容——問題解決進入新課——通過例子驗證勾股定理——得出勾股定理——通過習題鞏固所學——對課堂進行小結(jié)——布置課后作業(yè)進一步加強鞏固
七、教學過程
教學環(huán)節(jié)
教師活動
學生活動
設計意圖
情景導入
播放圖片
觀察圖片欣賞數(shù)學的美
讓學生感受勾股定理的文化之美
學習新課
講解勾股定理
認真聽老師講解
讓學生學會勾股定理的證明和運用
鞏固練習
提出問題
根據(jù)所學解決問題
讓學生熟練運用勾股定理
小結(jié)
總結(jié)本節(jié)課所學內(nèi)容,提問
根據(jù)老師的提問回答問題
讓學生鞏固本節(jié)課所學的知識
作業(yè)
布置作業(yè)
記錄作業(yè)并認真完成
讓學生通過練習對本節(jié)課內(nèi)容更加熟悉
八、學習評價設計
1、測試形式與工具(打√)
(1)課堂提問√
。2)書面練習√
。3)達標測試
(4)學生自主網(wǎng)上測試
。5)合作完成作品
。6)其他
2、測試內(nèi)容
課堂練習
課后作業(yè)
九、板書設計
勾股定理
證明:
設等腰直角三角形的直角邊長為a,斜邊長為b
藍色部分面積為:a2
+
a2
橙色部分面積為:b2
已知藍色面積=橙色面積
所以a2+a2=b2
勾股定理:
如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2
十、教學反思
成功之處:
1、在上課的起始放出圖片引起學生的學習興趣,為新授課做準備。
2、讓學生觀察圖片,找出數(shù)學信息,以問題引出新課,學習完新課后讓學生回頭解決最開始的問題
3、鼓勵學生運用多種方法解釋圖中的面積問題,并引導學生靠近勾股定理。
不足之處: .
1、在圖片引導新課的時候只是單純地讓學生看,沒有提問他們看到了什么。
2、證明過程講解沒有讓學生嘗試證明。
需要改進的地方:
1、認真鉆研教材,把握教材中各個環(huán)節(jié)之間的關(guān)系,比如說,本節(jié)課需要著重把勾股定理的證明進行講解,學生通過探索和老師的引導得出勾股定理。
2、需學習提問的技巧,爭取做到提出一個問題之后,學生能馬上明白老師的用意。
備注:此表頁碼不夠可以增加,須排版整潔、美觀。
冀教版《勾股定理》優(yōu)秀教案 15
一、教學目標
1、讓學生通過對的圖形創(chuàng)造、觀察、思考、猜想、驗證等過程,體會勾股定理的產(chǎn)生過程。
2、通過介紹我國古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學生為祖國的復興努力學習。
3、培養(yǎng)學生數(shù)學發(fā)現(xiàn)、數(shù)學分析和數(shù)學推理證明的能力。
二、教學重難點
利用拼圖證明勾股定理
三、學具準備
四個全等的直角三角形、方格紙、固體膠
四、教學過程
(一) 趣味涂鴉,引入情景
教師:很多同學都喜歡在紙上涂涂畫畫,今天想請大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?
(1)在邊長為1的方格紙上任意畫一個頂點都在格點上的直角三角形。
(2)再分別以這個三角形的三邊向三角形外作3個正方形。
學生活動:先獨立完成,再在小組內(nèi)互相交流畫法,最后班級展示。
(二)小組探究,大膽猜想
教師:觀察自己所涂鴉的圖形,回答下列問題:
1、請求出三個正方形的面積,再說說這些面積之間具有怎樣的數(shù)量關(guān)系?
2、圖中所畫的直角三角形的邊長分別是多少?請根據(jù)面積之間的關(guān)系寫出邊長之間存在的數(shù)量關(guān)系。
3、與小組成員交流探究結(jié)果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關(guān)系?
4、方法提煉:這種利用面積相等得出直角三角形三邊等量關(guān)系的`方法叫做什么方法?
學生活動:先獨立思考,再在小組內(nèi)互相交流探究結(jié)果,并猜想直角三角形的三邊關(guān)系,最后班級展示。
(三)趣味拼圖,驗證猜想
教師:請利用四個全等的直角三角形進行拼圖。
1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?
2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請寫下自己的推理過程。
學生活動:獨立拼圖,并思考如何利用圖形寫出相應的證明過程,再在組內(nèi)交流算法,最后在班級展示。
(四)課堂訓練 鞏固提升
教師:請完成下列問題,并上臺進行展示。
1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對邊分別為a,b,c
已知a=6,b=8.求c.
已知c=25,b=15.求a .
已知c=9,a=3.求b.(結(jié)果保留根號)
學生活動:先獨立完成問題,再組內(nèi)交流解題心得,最后上臺展示,其他小組幫助解決問題。
(五)課堂小結(jié),梳理知識
教師:說說自己這節(jié)課有哪些收獲?請從數(shù)學知識、數(shù)學方法、數(shù)學運用等方向進行總結(jié)。
冀教版《勾股定理》優(yōu)秀教案 16
一、教材分析:
。ㄒ唬┍竟(jié)內(nèi)容在全書和章節(jié)的地位
這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。
。ǘ┤S教學目標:
1、理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運用勾股定理及其計算;
2、通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。
。ㄈ┙虒W重點、難點:
勾股定理的證明與運用
用面積法等方法證明勾股定理
對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數(shù)學結(jié)論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。
1、創(chuàng)設情景,激發(fā)思維:創(chuàng)設生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;
2、自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數(shù)學問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的'課堂環(huán)境;
3、張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調(diào)動了學生的學習積極性。
二、教法與學法分析
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創(chuàng)設情景—動手操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)”六個方面。
新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。
三、教學過程設計
。ㄒ唬﹦(chuàng)設情景
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
問題的設計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉(zhuǎn)化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。
。ǘ﹦邮植僮
1、課件出示課本P99圖19、2、1:
觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結(jié)論?
學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。
2、緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19、2、2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。
3、再問:當邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個邊長分別為1、5,3、6,3、9這種含有小數(shù)的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。
(三)歸納驗證
通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學生在整個學習過程中感受學數(shù)學的樂趣,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。
先后三次驗證“勾股定理”這一結(jié)論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。
。ㄋ模﹩栴}解決
1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。
2、自學課本P101例1,然后完成P102練習。
(五)課堂小結(jié)1、小組成員從內(nèi)容、數(shù)學思想方法、獲取知識的途徑進行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。2、教師用多媒體介紹“勾股定理史話”
、佟吨荀滤銖健罚何髦艿纳谈撸ü磺Ф嗄昵埃┌l(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
、诳滴鯏(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。
目的是對學生進行愛國主義教育,激勵學生奮發(fā)向上。
。┎贾米鳂I(yè):課本P104習題19、2中的第1、2、3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。
以上內(nèi)容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!
冀教版《勾股定理》優(yōu)秀教案 17
一、教材分析:
勾股定理是學生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
二、教學重點:
勾股定理的證明和應用。
三、教學難點:
勾股定理的證明。
四、教法和學法:
教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
五、教學程序
本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設計如下:
。ㄒ唬﹦(chuàng)設情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
。ǘ┏醪礁兄斫饨滩
教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
(三)質(zhì)疑解難、討論歸納:
1、教師設疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的`表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
。2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
。ㄋ模╈柟叹毩晱娀岣
1、出示練習,學生分組解答,并由學生總結(jié)解題規(guī)律。課堂教學中動靜結(jié)合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
。ㄎ澹w納總結(jié)練習反饋
引導學生對知識要點進行總結(jié),梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助多媒體提高課堂教學效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
【冀教版《勾股定理》優(yōu)秀教案】相關(guān)文章:
冀教版美術(shù)教學設計03-07
冀教版小學數(shù)學教學設計03-03
冀教版美術(shù)教學設計 7篇03-07
冀教版數(shù)學三年級下冊教案04-09
冀教版五年級數(shù)學上冊教案02-20
冀教版六年級上冊英語教案01-23
魯教版教案03-13
冀教版六年級上《比例》教案2篇03-30
小學一年級冀教版數(shù)學上冊教案04-03
冀教版數(shù)學四年級下冊教案 運算06-09