亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 正比例教學(xué)設(shè)計(jì)

      時(shí)間:2024-05-19 13:03:07 教學(xué)資源 投訴 投稿

      正比例教學(xué)設(shè)計(jì)(合集)

        在教學(xué)工作者開展教學(xué)活動前,往往需要進(jìn)行教學(xué)設(shè)計(jì)編寫工作,借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。教學(xué)設(shè)計(jì)應(yīng)該怎么寫才好呢?下面是小編整理的正比例教學(xué)設(shè)計(jì),僅供參考,希望能夠幫助到大家。

      正比例教學(xué)設(shè)計(jì)(合集)

      正比例教學(xué)設(shè)計(jì)1

        教學(xué)目標(biāo)

        1、知識與技能

       、倮斫庹壤瘮(shù)的概念及正比例函數(shù)圖象特征。

        ②知道正比例函數(shù)圖象是直線,會畫正比例函數(shù)的圖象;進(jìn)一步熟悉作函數(shù)圖象的主要步驟。

        2、過程與方法

       、偻ㄟ^“燕鷗飛行路程問題”的探究和學(xué)習(xí),體會函數(shù)模型的思想。

       、诮(jīng)歷運(yùn)用圖形描述函數(shù)的過程,初步建立數(shù)形結(jié)合,經(jīng)歷探索正比例函數(shù)圖象形狀的過程,體驗(yàn)“列表、描點(diǎn)、連線”的內(nèi)涵。

        3、情感態(tài)度與價(jià)值觀

       、俳Y(jié)合描點(diǎn)作圖培養(yǎng)學(xué)生認(rèn)真細(xì)心嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和習(xí)慣。

       、谂囵B(yǎng)學(xué)生積極參與數(shù)學(xué)活動,勇于探究數(shù)學(xué)現(xiàn)象和規(guī)律,形成良好的質(zhì)疑和獨(dú)立思考的習(xí)慣。

        教學(xué)重點(diǎn):

        探索正比例函數(shù)圖形的形狀,會畫正比例函數(shù)圖象。

        教學(xué)難點(diǎn):

        正比例函數(shù)解析式的理解教學(xué)方法:探索歸納,啟發(fā)式講練結(jié)合

        教學(xué)準(zhǔn)備:

        多媒體課件

        教學(xué)過程

        一、提出問題,創(chuàng)設(shè)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣情境

        1、(1)你知道候鳥嗎?

       。2)它們在每年的遷徙中能飛行多遠(yuǎn)?

       。3)燕鷗的飛行路程與時(shí)間之間有什么樣的數(shù)量關(guān)系?教師用課件展示問題。讓學(xué)生觀察圖片中的燕鷗,然后思考并解答課本上的問題。學(xué)生自主解決三個(gè)問題。教師在學(xué)生得到結(jié)論的基礎(chǔ)上提醒:這里用函數(shù)y=200x對燕鷗飛行路程和時(shí)間規(guī)律進(jìn)行了刻畫。

        【設(shè)計(jì)意圖】從具體情境入手,讓學(xué)生從簡單的實(shí)例中不斷抽象出建立數(shù)學(xué)模型、數(shù)學(xué)關(guān)系的方法。

        二、出示本節(jié)課的`學(xué)習(xí)目標(biāo)

       、倮斫庹壤瘮(shù)的概念及正比例函數(shù)圖象特征。

        ②知道正比例函數(shù)圖象是直線,會畫正比例函數(shù)的圖象;進(jìn)一步熟悉作函數(shù)圖象的主要步驟。

        教師用課件展示學(xué)習(xí)目標(biāo),學(xué)生齊聲朗讀,記憶。

        【設(shè)計(jì)意圖】首先讓學(xué)生了解本節(jié)課的學(xué)習(xí)任務(wù),有目的的進(jìn)行本節(jié)課的學(xué)習(xí)。

        三、自學(xué)質(zhì)疑:

        自學(xué)課本86——87頁,并嘗試完成下列問題

        1、寫出下列問題中的函數(shù)表達(dá)式

        (1)圓的周長|隨半徑r的大小變化而變化

       。2)汽車在公路上以每小時(shí)100千米的速度行駛,怎樣表示它走過的路程S(千米)隨行駛時(shí)間t(小時(shí))變化的關(guān)系?

       。3)每個(gè)練習(xí)本的厚度為,一些練習(xí)本摞在一起的總厚度h(單位:cm)隨這些練習(xí)本的本數(shù)n的變化而變化

       。4)冷凍一個(gè)0度的物體,使它每分下降2度,物體的溫度T(單位:度)隨冷凍時(shí)間t(單位:分)的變化而變化

        2、這些函數(shù)有什么共同點(diǎn)?這樣的函數(shù)我們把它們稱為正比例函數(shù)。由上得到的啟發(fā),你能試著給正比例函數(shù)下個(gè)定義嗎?學(xué)生先自主探究,后分組討論,然后教師讓各小組代表回答問題。師生互動對回答的問題進(jìn)行分析評價(jià)。

        【設(shè)計(jì)意圖】通過這些實(shí)際問題使學(xué)生進(jìn)一步加深對函數(shù)概念的理解,也為導(dǎo)出正比例函數(shù)概念做好鋪墊。

        教師引導(dǎo)學(xué)生觀察分析上面的四個(gè)表達(dá)式的共性:都是常數(shù)與自變量乘積的形式。教師口述并板書正比例函數(shù)的概念。

        一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù)。

        教師讓學(xué)生看書,在定義處畫上記號,并提出問題:這里為什么強(qiáng)調(diào)k是常數(shù),k≠0?

        上述問題中各正比例函數(shù)的比例系數(shù)分別是什么?(由學(xué)生一一說出)

        做一做:下面的函數(shù)是不是正比例函數(shù)?y=3x y=2/x y=x/2 s=πr2

        通過上面的例子,師生共同總結(jié)正比例函數(shù)須滿足下面兩個(gè)條件:

        1、比例系數(shù)不能為0

        2、自變量X的次數(shù)是一次的。

        表示下列問題中的y與x的函數(shù)關(guān)系,并指出哪些是正比例函數(shù)。

        (1)正方形的邊長為xcm,周長為ycm;

       。2)某人一年內(nèi)的月平均收入為x元,他這年的總收入為y元;

       。3)一個(gè)長方體的長為2cm,寬為,高為xcm,體積為ycm3

        【設(shè)計(jì)意圖】通過歸納、分析使學(xué)生明白正比例函數(shù)的特征、理解其解析式的特點(diǎn)。

        我們現(xiàn)在已經(jīng)知道了正比例函數(shù)關(guān)系式的特點(diǎn),那么它的圖象有什么特征呢?自學(xué)課本87——89頁,并嘗試回答下列問題:[活動]

        1、各小組合作回顧函數(shù)圖象的畫法,畫出下列函數(shù)的圖象

       。1)y=2x(2)y=—2x

        【設(shè)計(jì)意圖】:通過活動,了解正比例函數(shù)圖象特點(diǎn)及函數(shù)變化規(guī)律,讓學(xué)生自己動手、動口、動腦,經(jīng)歷規(guī)律發(fā)現(xiàn)的整個(gè)過程,從而提高各方面能力及學(xué)習(xí)興趣。

        教師活動:引導(dǎo)學(xué)生正確畫圖、積極探索、總結(jié)規(guī)律、準(zhǔn)確表述。學(xué)生活動:利用描點(diǎn)法正確地畫出兩個(gè)函數(shù)圖象,在教師的引導(dǎo)下完成函數(shù)變化規(guī)律的探究過程,并能準(zhǔn)確地表達(dá)出,從而加深對規(guī)律的理解與認(rèn)識;顒舆^程與結(jié)論:

        1、函數(shù)y=2x中自變量x可以是任意實(shí)數(shù)。列表表示幾組對應(yīng)值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6畫出圖象如圖P1242、y=—2x的自變量取值范圍可以是全體實(shí)數(shù),列表表示幾組對應(yīng)值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6畫出圖象如圖P112

        問:①觀察兩個(gè)函數(shù)圖象,能得到那些信息?教師指導(dǎo):觀察函數(shù)圖象從以下幾個(gè)方面進(jìn)行:

       。1)自變量

        (2)函數(shù)值

       。3)升降性

       。4)特殊點(diǎn)

       。5)過了那幾個(gè)象限

       。6)圖象的形狀

       、诳偨Y(jié)正比例函數(shù)圖象的性質(zhì)

        3、兩個(gè)圖象的共同點(diǎn):都是經(jīng)過原點(diǎn)的直線。不同點(diǎn):函數(shù)y=2x的圖象從左向右呈狀態(tài),即隨著x的增大y也增大;經(jīng)過第一、三象限。函數(shù)y=—2x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減;y=—2x圖象經(jīng)過第二、四象限,從左向右呈狀態(tài),即隨x增大y反而減小

        三、鞏固練習(xí):

        1、判斷下列函數(shù)哪些是正比例函數(shù)

       。1)y=2x

        (2)y=kx(k≠0)

       。3)y=—1/3x(4)y=1/2x+2

       。5)y=3x2

        (6)y=—3x2

        2、教材練習(xí)題

        比較兩個(gè)函數(shù)圖象可以看出:兩個(gè)圖象都是經(jīng)過原點(diǎn)的直線。函數(shù)的圖象從左向右上升,經(jīng)過三、一象限,即隨x增大y也增大;函數(shù)的圖象從左向右下降,經(jīng)過二、四象限,即隨x增大y反而減小。

        四、總結(jié)歸納正比例函數(shù)解析式與圖象特征之間的規(guī)律:

        正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,我們可稱它為直線y=kx。當(dāng)k>0時(shí),直線y=kx經(jīng)過一、三象限,從左向右上升,即y隨x的增大而增大;當(dāng)k二、四象限,從左向右下降,即y隨x的增大而減小。

        五、鞏固深化

        1、畫正比例函數(shù)時(shí),怎樣畫最簡便?為什么?教師活動:引導(dǎo)學(xué)生從正比例函數(shù)圖象特征及關(guān)系式的聯(lián)系入手,尋求轉(zhuǎn)化的方法。從幾何意義上理解分析正比例函數(shù)圖象的簡單畫法。學(xué)生活動:在教師引導(dǎo)啟發(fā)下完成由圖象特征到解析式的轉(zhuǎn)化,進(jìn)一步理解數(shù)形結(jié)合思想,找出正比例函數(shù)圖象的簡單畫法,并知道原由。

        2、活動過程及結(jié)論:經(jīng)過原點(diǎn)與點(diǎn)(1,k)的直線是函數(shù)y=kx的圖象。畫正比例函數(shù)圖象時(shí),只需在原點(diǎn)外再確定一個(gè)點(diǎn),即找出一組滿足函數(shù)關(guān)系式的對應(yīng)數(shù)值即可,如(1,k)。因?yàn)閮牲c(diǎn)可以確定一條直線。

        隨堂練習(xí):用你認(rèn)為最簡單的方法畫出下列函數(shù)的圖像:(1)y=3/2x,(2)y=—3x

        六、總結(jié)歸納,布置作業(yè)

        1、在本節(jié)課中,我們經(jīng)歷了怎樣的過程,有怎樣的收獲?

        2、你還有什么困惑?

        作業(yè):P98習(xí)題19.2─1、2題。

        教學(xué)設(shè)計(jì)說明:

        本節(jié)教學(xué)設(shè)計(jì)以“自學(xué)質(zhì)疑,教師指導(dǎo)閱讀,咬文嚼字;合作釋疑,查漏補(bǔ)缺;展示評價(jià),培養(yǎng)學(xué)生的概括能力;鞏固深化,細(xì)心讀題,學(xué)生說題,培養(yǎng)學(xué)生的語言表達(dá)能力”四個(gè)步驟強(qiáng)化了學(xué)生的閱讀意識,提高了學(xué)生的閱讀興趣,培養(yǎng)了學(xué)生的閱讀能力。較好的完成了本節(jié)課的學(xué)習(xí)目標(biāo)。

      正比例教學(xué)設(shè)計(jì)2

        教學(xué)目標(biāo)

        知識與技能:理解正比例函數(shù)的意義;識別正比例函數(shù),根據(jù)已知條件求正比例函數(shù)的解析式或比例系數(shù)。過程與方法:通過現(xiàn)實(shí)生活中的具體事例引入正比例函數(shù),提高學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生認(rèn)真、細(xì)心、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,同時(shí)滲透熱愛大自然和生活的教育。

        教學(xué)重點(diǎn):識別正比例函數(shù),根據(jù)已知條件求正比例函數(shù)的解析式或比例系數(shù)。教學(xué)難點(diǎn):理解正比例函數(shù)的意義。

        教學(xué)設(shè)計(jì)

       。ㄒ唬﹦(chuàng)設(shè)情境,引入新知

        20xx年7月12日,我國著名運(yùn)動員劉翔在瑞士洛桑的田徑110米欄的決賽中,以12.88秒的成績打破了塵封13年的世界紀(jì)錄,為我們中華民族爭得了榮譽(yù)、

       。1)劉翔大約每秒鐘跑多少米呢?

        劉翔大約每秒鐘跑110÷12.88=8.54(米)、

        (2)劉翔奔跑的路程s(單位:米)與奔跑時(shí)間t(單位:秒)之間有什么關(guān)系?

        假設(shè)劉翔每秒奔跑的路程為8.54米,那么他奔跑的路程s(單位:米)就是其奔跑時(shí)間t(單位:秒)的函數(shù),函數(shù)解析式為s= 8.54t

       。0≤t ≤12.88)、

        (3)在前5秒,劉翔跑了多少米?

        劉翔在前5秒奔跑的路程,大約是t=5時(shí)函數(shù)s= 8.54t的值,即s=8.54×5=42.7(米)、

        教師活動:教師用多媒體呈現(xiàn)問題,學(xué)生活動:學(xué)生思考并解答。教師重點(diǎn)關(guān)注:學(xué)生能否順利寫出y與x的函數(shù)關(guān)系式。注意自變量的取值范圍、

        設(shè)計(jì)意圖:

        通過“劉翔”這一實(shí)際情境引入,使學(xué)生認(rèn)識到現(xiàn)實(shí)生活和數(shù)學(xué)密不可分,向?qū)W生滲透熱愛運(yùn)動、努力拼搏的精神。同時(shí)發(fā)展學(xué)生從實(shí)際問題中提取有用的數(shù)學(xué)信息,建立數(shù)學(xué)模型的能力。

        (二)觀察思考、歸納概念

        問題1:

        下列問題中的變量對應(yīng)規(guī)律可用怎樣的函數(shù)表示?請指出函數(shù)解析式中的常數(shù)、自變量和自變量的函數(shù)、

       。1)圓的周長l隨半徑r的大小變化而變化;

       。2)鐵的密度為7.8g/ cm3,鐵塊的質(zhì)量m(單位:g)隨它的體積v(單位:cm3)的大小變化而變化。

       。3)每個(gè)練習(xí)本的.厚度為0.5 cm,一些練習(xí)本摞在一起的總厚度h(單位:cm)隨這些練習(xí)本的本數(shù)n的變化而變化;

       。4)冷凍一個(gè)0 ℃物體,使它每分下降2 ℃,物體的溫度t(單位:℃)隨冷凍時(shí)間t(單位:分)的變化而變化、

        教師活動:教師多媒體呈現(xiàn)上述四個(gè)實(shí)際問題。學(xué)生活動:學(xué)生獨(dú)立解答,解答后小組交流,出代表進(jìn)行反饋。

        設(shè)計(jì)意圖:

        通過指出常數(shù)、自變量、自變量的函數(shù),對函數(shù)的概念進(jìn)行回顧,從而為后續(xù)環(huán)節(jié)找正比例函數(shù)的共同點(diǎn)建立生長點(diǎn)。通過對實(shí)際問題討論,使學(xué)生體驗(yàn)從具體到抽象的認(rèn)識過程。

        問題2:

        教師活動:將上表中的前四個(gè)函數(shù)進(jìn)行比較

        思考:四個(gè)函數(shù)有什么共同特點(diǎn)?

        學(xué)生活動:觀察、思考。小組交流,分析、歸納共同特點(diǎn),出代表反饋。教師要根據(jù)學(xué)生的具體表現(xiàn),通過引導(dǎo)、點(diǎn)撥,使學(xué)生比較、觀察得出共同點(diǎn)。教師根據(jù)學(xué)生的表述板書:

        共同點(diǎn):常數(shù)×自變量、

        學(xué)生閱讀教材正比例函數(shù)的概念

        教師板書:

        概念:一般地,形如y=kx(k是常數(shù),k ≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù)、

        教師追問:這里為什么強(qiáng)調(diào)k是常數(shù),k≠0呢?正比例函數(shù)y=kx(k≠0)的結(jié)構(gòu)特征

        ①k≠0

       、趚的次數(shù)是1

        學(xué)生活動:學(xué)生交流、討論,互相補(bǔ)充。設(shè)計(jì)意圖:通過將前四個(gè)函數(shù)進(jìn)行比較,是學(xué)生通過比較、觀察、分析、概括出正比例函數(shù)的共同特點(diǎn),使學(xué)生明白正比例函數(shù)的特征,從而歸納出正比例函數(shù)的概念。有效地克服了因沒有對比直接觀察使學(xué)生出現(xiàn)的不適性、盲目性。培養(yǎng)學(xué)生的觀察、分析、歸納、概括等思維能力。

       。ㄈ┚毩(xí)運(yùn)用,內(nèi)化概念

        判斷下列函數(shù)是否為正比例函數(shù)?如果是,請指出比例系數(shù)。

        教師活動:出示上題

        學(xué)生活動:獨(dú)立解答,教師巡視。教師根據(jù)學(xué)生反饋情況,引導(dǎo)學(xué)生根據(jù)“常數(shù)×自變量”歸納辨別正比例函數(shù)要注意的問題。

        設(shè)計(jì)意圖:

        使學(xué)生結(jié)合實(shí)例深入理解概念的內(nèi)涵,做到具體問題具體分析。

        (四)、針對訓(xùn)練,提升能力

        例1(1)若y=5x3m—2是正比例函數(shù),m=。

       。2)若y=(3m—2)x是正比例函數(shù),則m的取值范圍____。變式練習(xí)1、若y=(m—1)xm2是關(guān)于x的正比例函數(shù),則m=

        2、已知一個(gè)正比例函數(shù)的比例系數(shù)是—5,則它的解析式為:()

        3、某學(xué)校準(zhǔn)備添置一批籃球,已知所購籃球的總價(jià)y(元)與個(gè)數(shù)x(個(gè))成正比例,當(dāng)x=4(個(gè))時(shí),y=100(元)。

       。1)求正比例函數(shù)關(guān)系式及自變量的取值范圍;

       。2)求當(dāng)x=10(個(gè))時(shí),函數(shù)y的值;

       。3)求當(dāng)y=500(元)時(shí),自變量x的值。

       。ㄎ澹、小結(jié)與作業(yè):

        小結(jié):

        本節(jié)課你有哪些收獲?用你的語言說一說。

        作業(yè):

        課后練習(xí)1題、2題。設(shè)計(jì)意圖:

        通過學(xué)生自己回顧、歸納本節(jié)內(nèi)容,使學(xué)生對本節(jié)課的內(nèi)容進(jìn)行一次重新梳理,使學(xué)生能從整體上對本節(jié)內(nèi)容有一個(gè)深刻地認(rèn)識,使知識內(nèi)化

        板書設(shè)計(jì)

        正比例函數(shù)

        一、正比例函數(shù)概念:一般地,形如y=kx(k是常數(shù),k ≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù)

      正比例教學(xué)設(shè)計(jì)3

        教學(xué)內(nèi)容:

        蘇教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書第94頁《正比例和反比例》“練習(xí)與實(shí)踐”的第1-6題。

        教材學(xué)情分析:

        《正比例和反比例》復(fù)習(xí)教材上分為兩個(gè)部分,“整理與反思”部分主要復(fù)習(xí)比的意義和性質(zhì),以及成正比例和反比例的量。教材先引導(dǎo)學(xué)生結(jié)合具體的例子回憶并整理比的意義、基本性質(zhì)以及比的應(yīng)用,再用填空的形式幫助學(xué)生進(jìn)一步明確比與分?jǐn)?shù)、除法的關(guān)系。在此基礎(chǔ)上,要求學(xué)生說說比的基本性質(zhì)與分?jǐn)?shù)的基本性質(zhì)、商不變的規(guī)律有什么聯(lián)系和區(qū)別。這樣的比較有利于學(xué)生體會比的基本性質(zhì)與分?jǐn)?shù)的基本性質(zhì)、商不變的規(guī)律的一致性,有利于學(xué)生加深對比與分?jǐn)?shù)、除法關(guān)系的理解,促進(jìn)學(xué)生對數(shù)學(xué)知識的靈活運(yùn)用。接下來,教材重點(diǎn)引導(dǎo)學(xué)生交流判斷兩種量是否成比例、成什么比例的思考方法,并要求學(xué)生找出一些生活中成正比例或反比例量的例子,幫助學(xué)生進(jìn)一步認(rèn)識成正比例和反比例的量,感受正比例和反比例是描述數(shù)量關(guān)系及其變化規(guī)律的又一種有效的數(shù)學(xué)模型。

        “練習(xí)與實(shí)踐”第1題讓學(xué)生寫出本班的男、女生人數(shù),再要求學(xué)生分別寫出男生和女生人數(shù),在要求學(xué)生分別寫出男生和女生人數(shù)的比以及女生和全班人數(shù)的比,幫助學(xué)生在練習(xí)中進(jìn)一步理解比的意義,掌握用比表示數(shù)量之間關(guān)系的基本方法;“練習(xí)與實(shí)踐”第2題讓學(xué)生先分小組量一量人體有關(guān)部分的長度,再按要求寫出部分長度的比,再求出比值。然后啟發(fā)學(xué)生通過進(jìn)一步的交流和比較,發(fā)現(xiàn)一些有趣的現(xiàn)象。這樣的活動,既有較強(qiáng)的`趣味性,又能較好體現(xiàn)比的應(yīng)用價(jià)值,有利于吸引學(xué)生積極主動參與活動,并在活動中獲得一些新的認(rèn)識;“練習(xí)與實(shí)踐”第3題結(jié)合直觀的圖片,先讓學(xué)生按要求寫出一些比,再估計(jì)寫出的這些比中哪兩個(gè)比可以組成比例,并通過計(jì)算加以驗(yàn)算。這里的估計(jì)即可以依據(jù)每一個(gè)比中前項(xiàng)和后項(xiàng)之間的關(guān)系,也可以依據(jù)相應(yīng)長方形圖片的形狀,因而這個(gè)活動既能幫助學(xué)生復(fù)習(xí)比例的意義,又有利于學(xué)生進(jìn)一步體會圖形的放大和縮小與比例的內(nèi)在聯(lián)系;“練習(xí)與實(shí)踐”第4題是解比例的練習(xí)。練習(xí)的目的主要是讓學(xué)生進(jìn)一步理解比例的基本性質(zhì),并掌握解比例的基本方法;“練習(xí)與實(shí)踐”第5題提供了對我國東、西部地區(qū)各類土地資源面積進(jìn)行比較的百分?jǐn)?shù),要求學(xué)生把其中一些用百分?jǐn)?shù)表示的數(shù)量關(guān)系改寫成用比表示,并交流從這組數(shù)據(jù)中所獲得的其他信息。通過練習(xí),可以使學(xué)生進(jìn)一步體會比和百分?jǐn)?shù)在表示數(shù)量關(guān)系方面的各自特點(diǎn),加深對比與百分?jǐn)?shù)關(guān)系的理解;“練習(xí)與實(shí)踐”第6題先讓學(xué)生看圖寫出一個(gè)房間中兩種地磚面積的比,再讓學(xué)生聯(lián)系這個(gè)房間算出這兩種地磚的面積,幫助學(xué)生進(jìn)一步理解比的意義,掌握解決按比例分配的實(shí)際問題的基本方法。

        教學(xué)目標(biāo):

       、攀箤W(xué)生進(jìn)一步理解比的意義和基本性質(zhì),理解比與分?jǐn)?shù)、除法的關(guān)系,能根據(jù)要求求比值、化簡比;理解比例的意義和基本性質(zhì),會解比例;認(rèn)識成正比例和反比例的量,感受表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型;能運(yùn)用比和比例的知識解決一些簡單實(shí)際問題,豐富解決問題策略,積累解決問題的經(jīng)驗(yàn)。

       、仆ㄟ^量一量等操作活動,吸引學(xué)生積極主動參與,感受比的應(yīng)用價(jià)值,在活動中獲得一些新的認(rèn)識;

       、鞘箤W(xué)生在系統(tǒng)復(fù)習(xí)的過程中,體驗(yàn)與同學(xué)合作交流以及獲取知識的樂趣,增進(jìn)對數(shù)學(xué)學(xué)習(xí)的積極情感,增強(qiáng)學(xué)好數(shù)學(xué)的信心。

        教學(xué)重點(diǎn):進(jìn)一步理解比和比例的一些知識。

        教學(xué)難點(diǎn):感受比的應(yīng)用價(jià)值,在活動中獲得一些新的認(rèn)識。

        教學(xué)具準(zhǔn)備:

        教學(xué)流程:

        一、自主學(xué)習(xí),完成練習(xí)。

       、沤沂菊n題。

        教師談話:今天我們復(fù)習(xí)《正比例和反比例》。板書課題——“正比例和反比例”。

       、谱灾骶毩(xí)。

        教師談話:用5-8分鐘的時(shí)間閱讀課本94頁的內(nèi)容,完成“練習(xí)與實(shí)踐”1-6題,其中“練習(xí)與實(shí)踐”第2題作為課前活動,“練習(xí)與實(shí)踐”第1題本班的男女生人數(shù)板書在黑板上,男生24人、女生27人。

        學(xué)生自主練習(xí),教師巡視。

        二、交流討論,梳理知識。

       、耪肀鹊闹R。

        交流“練習(xí)與實(shí)踐”第1題的答案,并矯正;理解“男生和女生人數(shù)的比是8:9”的意思,一般表示男生是女生人數(shù)的8/9,男生和女生人數(shù)是除法關(guān)系;“男生和女生人數(shù)的比是8:9”由比24:27化簡而來,回憶比的基本性質(zhì);體會“女生和全班人數(shù)的比是9:17”答案由來的多種途徑。

       、聘惺苌钪械谋壤

        交流頭長和身高的比,讓多名學(xué)生將自己頭長和身高的比和比值板書在黑板上;指導(dǎo)學(xué)生取近似值,整理答案,再說說自己的發(fā)現(xiàn),比值一般很接近的,感受生活中的比例。

       、钦肀壤闹R。

        交流“練習(xí)與實(shí)踐”第3題的答案,并矯正;根據(jù)寫成的比例理解比例的意義,根據(jù)圖形的放大或縮小溝通比的基本性質(zhì)和分?jǐn)?shù)基本性質(zhì)的一致性;根據(jù)圖形的放大或縮小體會和比例的關(guān)系。

       、日斫獗壤闹R。

        交流“練習(xí)與實(shí)踐”第4題的答案,并矯正;理解比例的基本性質(zhì),以及在解比例中運(yùn)用,掌握解比例的方法。

        ⑸解決實(shí)際問題。

        交流“練習(xí)與實(shí)踐”第5題,先說說對表中百分?jǐn)?shù)的理解,交流我國東西部各自的特點(diǎn);掌握把兩個(gè)數(shù)量的百分?jǐn)?shù)關(guān)系改寫成比的一般方法,用對應(yīng)的分?jǐn)?shù)表示前項(xiàng)和后項(xiàng),再化簡。交流“練習(xí)與實(shí)踐”第6題,說說得到兩種地磚鋪地面積比的思考過程,因?yàn)槊繅K地磚的大小是相同的,所以可以轉(zhuǎn)化成塊數(shù)來寫出面積的比;交流問題2的解決過程,體會比的應(yīng)用。

        ⑹談?wù)劚竟?jié)課的收獲。

      正比例教學(xué)設(shè)計(jì)4

        【教學(xué)內(nèi)容】

        正比例

        【教學(xué)目標(biāo)】

        使學(xué)生理解正比例的意義,會正確判斷成正比例的量。

        【重點(diǎn)難點(diǎn)】

        重點(diǎn):理解正比例的意義。

        難點(diǎn):正確判斷兩個(gè)量是否成正比例的關(guān)系。

        【教學(xué)準(zhǔn)備】

        投影儀。

        【復(fù)習(xí)導(dǎo)入】

        1.復(fù)習(xí)引入。

        用投影儀逐一出示下面的題目,讓學(xué)生回答。

       、僖阎烦毯蜁r(shí)間,怎樣求速度?

        板書: =速度。

       、谝阎們r(jià)和數(shù)量,怎樣求單價(jià)?

        板書: =單價(jià)。

       、垡阎ぷ骺偭亢凸ぷ鲿r(shí)間,怎樣求工作效率?

        板書: =工作效率。

        2.引入課題:這是我們過去學(xué)過的一些常見的數(shù)量關(guān)系。這節(jié)課我們進(jìn)一步來研究這些數(shù)量關(guān)系的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系。板書課題:成正比例的量。

        【新課講授】

        1. 教學(xué)例1。

        教師用投影儀出示例1的圖和表格。

        學(xué)生觀察上表并討論問題。

        (1)鉛筆的總價(jià)和數(shù)量有關(guān)系嗎?

        (2)鉛筆的總價(jià)是怎樣隨著數(shù)量的變化而變化的?

        (3)鉛筆的總價(jià)和數(shù)量的變化有什么規(guī)律?組織學(xué)生在小組中討論,然后交流說一說。

        根據(jù)觀察,學(xué)生可能會說出:

       、巽U筆的總價(jià)隨著數(shù)量變化,它們是兩種相關(guān)聯(lián)的量。

        ②數(shù)量增加,總價(jià)也增加;數(shù)量降低,總價(jià)也減少。

        ③鉛筆的總價(jià)和數(shù)量的比值總是一定的,即單價(jià)一定。

        教師指出:總價(jià)和數(shù)量有這樣的變化關(guān)系,我們就說總價(jià)和數(shù)量成正比例關(guān)系,總價(jià)和數(shù)量叫做成正比例的量。

        2.教師出示:一列火車行駛的時(shí)間和路程如下表。

        引導(dǎo)學(xué)生觀察、思考:路程和時(shí)間有關(guān)系嗎?路程怎樣隨著時(shí)間的變化而變化?路程和時(shí)間的變化有什么規(guī)律?

        組織學(xué)生分析、討論、匯報(bào):路程和時(shí)間是兩種相關(guān)聯(lián)的量,路程擴(kuò)大,時(shí)間也跟著擴(kuò)大;路程縮小,時(shí)間也跟著縮小;但是路程和時(shí)間的比值一定,寫成關(guān)系式是 =速度(一定)。

        教師小結(jié):所以說路程和時(shí)間成正比例關(guān)系,路程和時(shí)間叫做成正比例的量。

        3.歸納概括正比例關(guān)系。

       、俳M織學(xué)生分小組討論,上面兩個(gè)例子有什么共同規(guī)律?

       、诮處熞龑(dǎo)學(xué)生歸納總結(jié):都是兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化;如果這兩種量中相對應(yīng)的兩個(gè)數(shù)的比值也就是商一定,這兩種量就叫做成正比例的量,它們的關(guān)系就叫做成正比例關(guān)系。

        學(xué)生說一說是怎么理解正比例關(guān)系的`。

        要求學(xué)生把握三個(gè)要素:

        第一:兩種相關(guān)聯(lián)的量。

        第二:其中一個(gè)量增加,另一個(gè)量也增加;一個(gè)量減少,另一個(gè)量也減少。

        第三:兩個(gè)量的比值一定。

        4.用字母表示正比例的關(guān)系。

        教師:如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),比例關(guān)系可以用這樣的式子表示: (一定)

        5.教師:想一想,生活中還有哪些成正比例的量?

        學(xué)生舉例說明并說出理由如:長方形的寬一定,面積和長成正比例;每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例;衣服的單價(jià)一定,購買衣服的數(shù)量和應(yīng)付錢數(shù)成正比例。地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例;

        【課堂作業(yè)】

        完成教材第46頁的“做一做”(1)~(3)。

        答案:

        (1) 。

        (2)比值表示每小時(shí)行駛多少km。

        (3)成正比例。理由:路程隨著時(shí)間的變化而變化。

       、贂r(shí)間增加,路程也增加,時(shí)間減少,路程也隨著減少;②路程和時(shí)間的比值(速度)一定。

        【課堂小結(jié)】

        通過這節(jié)課的學(xué)習(xí),你有什么收獲?

        【課后作業(yè)】

        完成練習(xí)冊中本課時(shí)的練習(xí)。

      正比例教學(xué)設(shè)計(jì)5

        學(xué)習(xí)目標(biāo) :加深對正比例意義的理解,能正確判斷兩個(gè)相關(guān)聯(lián)的量是不是成正比例。

        學(xué)習(xí)重點(diǎn) :進(jìn)一步掌握正比例的意義。

        學(xué)習(xí)難點(diǎn): 能正確判斷兩個(gè)相關(guān)聯(lián)的量是不是成正比例。

        教學(xué)過程:

        一、溫故互查:

        1、正比例的意義是什么?

        2、如果用字母x和y表示兩種相關(guān)聯(lián)的量,用字母k表示它們的比值(一

        定),正比例關(guān)系可以怎樣表示?

        3、齊讀正比例兒歌。

        二、自學(xué)感悟:

        “想一想”

        (1)正方形的周長與邊長成正比例嗎?面積與邊長呢?為什么?

       。2)父子的年齡成正比例嗎?為什么?

        三、合作交流:

        在組內(nèi)交流以上問題的解決過程。

        四、展示點(diǎn)評:

        正方形的周長隨邊長的變化而變化,并且周長與邊長的比值都是

        4,所以兩個(gè)量成正比例;正方形的面積雖然也隨邊長的變化而變化,但面積與邊長的比值是一個(gè)變化的值,所以兩個(gè)量不成正比例。

        雖然樂樂歲數(shù)增加,爸爸歲數(shù)也增加,但是樂樂歲數(shù)與爸爸歲數(shù)的比值不是一個(gè)確定的值,所以父子的年齡不成正比例。

        五、鞏固練習(xí):

        判斷:

       。1)減數(shù)一定,被減數(shù)和差成正比例。

       。2)三角形的底一定,三角形的面積和它的高成正比例。

        (3)成正比例的兩個(gè)量,一種量擴(kuò)大,另一種量也隨著擴(kuò)大。

        六、拓展延伸:

        找一找生活中成正比例的例子,并與同伴交流。

        板書設(shè)計(jì):

        正比例

        y =k(一定)x

        教學(xué)反思:

        我認(rèn)為本節(jié)課最大的特點(diǎn)便是提供了豐富的材料,選擇了師生互動,以教師的“引”為主導(dǎo),學(xué)生為主體,呈現(xiàn)給學(xué)生豐富的感性材料,讓學(xué)生在互動交流中去理解成正比例的量這一概念。

        3、畫一畫

        學(xué)習(xí)目標(biāo):

        1、在具體情境中,通過“畫一畫”的活動,初步認(rèn)識正比例圖象。

        2、會在方格紙上描出成正比例的量所對應(yīng)的點(diǎn),并能在圖中根據(jù)一個(gè)變量的值估計(jì)它所對應(yīng)的變量的值。

        3、利用正比例關(guān)系,解決生活中的'一些簡單問題。

        學(xué)習(xí)重點(diǎn): 在具體情境中,通過“畫一畫”的活動,初步認(rèn)識正比例圖象。

        學(xué)習(xí)難點(diǎn): 利用正比例關(guān)系,解決生活中的一些簡單問題。 教學(xué)過程:

        一、自主嘗試:

        判斷下面的量是否成正比例關(guān)系?

        1、每行人數(shù)一定,總?cè)藬?shù)和行數(shù)。

        2、長方形的長一定,寬和面積。

        3、長方體的底面積一定,體積和高。 4、分子一定,分母和分?jǐn)?shù)值。

        5、長方形的周長一定,長和寬。

        6、一個(gè)自然數(shù)和它的倒數(shù)。

        7、正方形的邊長與周長。

        8、正方形的邊長與面積。

        9、圓的半徑與周長。

        10、圓的面積與半徑。

        11、什么樣的兩個(gè)量叫做成正比例的量? 二、合作探究:

        小組合作完成課本44頁例題重點(diǎn)找出正比例圖像的特征。 三、匯報(bào)點(diǎn)評:

        小組匯報(bào),集體點(diǎn)評。

        四、歸納總結(jié):

        1、表示成正比例關(guān)系的兩個(gè)相對應(yīng)量中的各點(diǎn)在同一直線上,即正比例關(guān)系的圖像是一條經(jīng)過原點(diǎn)的直線。

        2、從圖像中可以直觀看到兩種量的變化情況。

        五、鞏固練習(xí):

        完成課本45頁“練一練”第1、2、題

        六、拓展延伸:

        完成課本45頁“練一練”第3題

        板書設(shè)計(jì):

        畫一畫

        正比例關(guān)系的圖像是: 一條經(jīng)過原點(diǎn)的直線。

        教學(xué)反思:

        在本節(jié)課教學(xué)設(shè)計(jì)中我本著以下幾個(gè)要求:1、正比例是研究兩個(gè)量之間的一種關(guān)系。2、知道正比例是一種怎樣的圖像。3、我們?yōu)槭裁匆J(rèn)識正比例圖像在利用圖像解決問題這一環(huán)節(jié),我著重讓學(xué)生利用圖像解決一個(gè)又一個(gè)問題中體會認(rèn)識正比例圖像的好處,從而使學(xué)生充分感受到我們所學(xué)的知識是與我們的生活密切相關(guān)的。

        4、反比例

      正比例教學(xué)設(shè)計(jì)6

        教學(xué)目標(biāo)

       。ㄒ唬┙虒W(xué)知識點(diǎn)

       。保J(rèn)識正比例函數(shù)的意義.

        2.掌握正比例函數(shù)解析式特點(diǎn).

       。常斫庹壤瘮(shù)圖象性質(zhì)及特點(diǎn).

       。矗芾盟鶎W(xué)知識解決相關(guān)實(shí)際問題.

        教學(xué)重點(diǎn)

       。保斫庹壤瘮(shù)意義及解析式特點(diǎn).

       。玻莆照壤瘮(shù)圖象的性質(zhì)特點(diǎn).

       。常芨鶕(jù)要求完成轉(zhuǎn)化,解決問題.

        教學(xué)難點(diǎn)

        正比例函數(shù)圖象性質(zhì)特點(diǎn)的掌握.

        教學(xué)過程

        Ⅰ.提出問題,創(chuàng)設(shè)情境

        一九九六年,鳥類研究者在芬蘭給一只燕鷗??鳥)套上標(biāo)志環(huán).4個(gè)月零1周后人們在2.56萬千米外的澳大利亞發(fā)現(xiàn)了它.

        1.這只百余克重的小鳥大約平均每天飛行多少千米(精確到10千米)?

       。玻@只燕鷗的行程y(千米)與飛行時(shí)間x(天)之間有什么關(guān)系?

       。常@只燕鷗飛行1個(gè)半月的行程大約是多少千米?

        我們來共同分析:

        一個(gè)月按30天計(jì)算,這只燕鷗平均每天飛行的路程不少于:

        ÷(30×4+7)≈200(km)

        若設(shè)這只燕鷗每天飛行的路程為200km,那么它的行程y(千米)就是飛行時(shí)間x(天)的函數(shù).函數(shù)解析式為:

        y=200x(0≤x≤127)

        這只燕鷗飛行1個(gè)半月的行程,大約是x=45時(shí)函數(shù)y=200x的值.即

        y=200×45=9000(km)

        以上我們用y=200x對燕鷗在4個(gè)月零1周的飛行路程問題進(jìn)行了刻畫.盡管這只是近似的,但它可以作為反映燕鷗的行程與時(shí)間的對應(yīng)規(guī)律的一個(gè)模型.

        類似于y=200x這種形式的函數(shù)在現(xiàn)實(shí)世界中還有很多.它們都具備什么樣的特征呢?我們這節(jié)課就來學(xué)習(xí).

       、颍畬(dǎo)入新課

        首先我們來思考這樣一些問題,看看變量之間的'對應(yīng)規(guī)律可用怎樣的函數(shù)來表示?這些函數(shù)有什么共同特點(diǎn)?

       。保畧A的周長L隨半徑r的大小變化而變化.

        2.鐵的密度為7.8g/cm3.鐵塊的質(zhì)量m(g)隨它的體積V(cm3)的大小變化而變化.

       。常總(gè)練習(xí)本的厚度為0.5cm.一些練習(xí)本摞在一些的總厚度h(cm)隨這些練習(xí)本的本數(shù)n的變化而變化.

       。矗鋬鲆粋(gè)0℃的物體,使它每分鐘下降2℃.物體的溫度T(℃)隨冷凍時(shí)間t(分)的變化而變化.

        解:1.根據(jù)圓的周長公式可得:L=2r.

       。玻罁(jù)密度公式p=可得:m=7.8V.

       。常畵(jù)題意可知:h=0.5n.

        4.據(jù)題意可知:T=—2t.

        我們觀察這些函數(shù)關(guān)系式,不難發(fā)現(xiàn)這些函數(shù)都是常數(shù)與自變量乘積的形式,和y=200x的形式一樣.

        一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional func—tion),其中k叫做比例系數(shù).

        我們現(xiàn)在已經(jīng)知道了正比例函數(shù)關(guān)系式的特點(diǎn),那么它的圖象有什么特征呢?

        [活動一]

        活動內(nèi)容設(shè)計(jì):

        畫出下列正比例函數(shù)的圖象,并進(jìn)行比較,尋找兩個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn),考慮兩個(gè)函數(shù)的變化規(guī)律.

        1.y=2x2.y=—2x

        活動設(shè)計(jì)意圖:

        通過活動,了解正比例函數(shù)圖象特點(diǎn)及函數(shù)變化規(guī)律,讓學(xué)生自己動手、動口、動腦,經(jīng)歷規(guī)律發(fā)現(xiàn)的整個(gè)過程,從而提高各方面能力及學(xué)習(xí)興趣.

        教師活動:

        引導(dǎo)學(xué)生正確畫圖、積極探索、總結(jié)規(guī)律、準(zhǔn)確表述.

        學(xué)生活動:

        利用描點(diǎn)法正確地畫出兩個(gè)函數(shù)圖象,在教師的引導(dǎo)下完成函數(shù)變化規(guī)律的探究過程,并能準(zhǔn)確地表達(dá)出,從而加深對規(guī)律的理解與認(rèn)識.

        活動過程與結(jié)論:

        1.函數(shù)y=2x中自變量x可以是任意實(shí)數(shù).列表表示幾組對應(yīng)值:

        x—3—2—

        y—6—4—

        畫出圖象如圖(1).

       。玻畒=—2x的自變量取值范圍可以是全體實(shí)數(shù),列表表示幾組對應(yīng)值:

        x—3—2—

        y6420—2—4—6

        畫出圖象如圖(2).

       。常畠蓚(gè)圖象的共同點(diǎn):都是經(jīng)過原點(diǎn)的直線.

        不同點(diǎn):函數(shù)y=2x的圖象從左向右呈上升狀態(tài),即隨著x的增大y也增大;經(jīng)過第一、三象限.函數(shù)y=—2x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減;經(jīng)過第二、四象限.

        嘗試練習(xí):

        在同一坐標(biāo)系中,畫出下列函數(shù)的圖象,并對它們進(jìn)行比較.

        1.y=x2.y=—x

        x—6—4—

        y=x—3—2—

        y=—x3210—1—2—3

        比較兩個(gè)函數(shù)圖象可以看出:兩個(gè)圖象都是經(jīng)過原點(diǎn)的直線.函數(shù)y=x的圖象從左向右上升,經(jīng)過三、一象限,即隨x增大y也增大;函數(shù)y=—x的圖象從左向右下降,經(jīng)過二、四象限,即隨x增大y反而減。

        總結(jié)歸納正比例函數(shù)解析式與圖象特征之間的規(guī)律:

        正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線.當(dāng)x>0時(shí),圖象經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k

        正是由于正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條直線,我們可以稱它為直線y=kx.

        [活動二]

        活動內(nèi)容設(shè)計(jì):

        經(jīng)過原點(diǎn)與點(diǎn)(1,k)的直線是哪個(gè)函數(shù)的圖象?畫正比例函數(shù)的圖象時(shí),怎樣畫最簡單?為什么?

        活動設(shè)計(jì)意圖:

        通過這一活動,讓學(xué)生利用總結(jié)的正比例函數(shù)圖象特征與解析式的關(guān)系,完成由圖象到關(guān)系式的轉(zhuǎn)化,進(jìn)一步理解數(shù)形結(jié)合思想的意義,并掌握正比例函數(shù)圖象的簡單畫法及原理.

        教師活動:

        引導(dǎo)學(xué)生從正比例函數(shù)圖象特征及關(guān)系式的聯(lián)系入手,尋求轉(zhuǎn)化的方法.從幾何意義上理解分析正比例函數(shù)圖象的簡單畫法.

        學(xué)生活動:

        在教師引導(dǎo)啟發(fā)下完成由圖象特征到解析式的轉(zhuǎn)化,進(jìn)一步理解數(shù)形結(jié)合思想,找出正比例函數(shù)圖象的簡單畫法,并知道原由.

        活動過程及結(jié)論:

        經(jīng)過原點(diǎn)與點(diǎn)(1,k)的直線是函數(shù)y=kx的圖象.

        畫正比例函數(shù)圖象時(shí),只需在原點(diǎn)外再確定一個(gè)點(diǎn),即找出一組滿足函數(shù)關(guān)系式的對應(yīng)數(shù)值即可,如(1,k).因?yàn)閮牲c(diǎn)可以確定一條直線.

       、螅S堂練習(xí)

        用你認(rèn)為最簡單的方法畫出下列函數(shù)圖象:

       。保畒=x2.y=—3x

        解:除原點(diǎn)外,分別找出適合兩個(gè)函數(shù)關(guān)系式的一個(gè)點(diǎn)來:

        1.y= x(2,3)

       。玻畒=—3x(1,—3)

        小結(jié):

        本節(jié)課我們通過實(shí)例了解了正比例函數(shù)解析式的形式及圖象的特征,并掌握圖象特征與關(guān)系式的聯(lián)系規(guī)律,經(jīng)過思考、嘗試,知道了正比例函數(shù)不同表現(xiàn)形式的轉(zhuǎn)化方法,及圖象的簡單畫法,為以后學(xué)習(xí)一次函數(shù)奠定了基礎(chǔ).課后作業(yè)

        習(xí)題11.2─1、2題.

      正比例教學(xué)設(shè)計(jì)7

        教學(xué)內(nèi)容

        教科書第54頁例3,練習(xí)十二5,6,7題。

        教學(xué)目標(biāo)

        1.進(jìn)一步理解正比例的意義,會運(yùn)用正比例知識解決簡單的實(shí)際問題。

        2.通過運(yùn)用正比例解決實(shí)際問題的活動,讓學(xué)生體驗(yàn)數(shù)學(xué)的應(yīng)用價(jià)值,培養(yǎng)學(xué)生解決問題的能力。

        3.滲透函數(shù)思想,使學(xué)生受到辯證唯物主義觀念的啟蒙教育。

        教學(xué)重、難點(diǎn)

        運(yùn)用正比例知識解決簡單的實(shí)際問題。

        教學(xué)準(zhǔn)備

        教具:多媒體課件。

        學(xué)具:作業(yè)本,數(shù)學(xué)書。

        教學(xué)過程

        一、復(fù)習(xí)引入

        1.判斷下面各題中的兩種量是不是成正比例?為什么?

       。1)飛機(jī)飛行的速度一定,飛行的時(shí)間和航程。

        (2)梯形的上底和下底不變,梯形的面積和高。

        (3)一個(gè)加數(shù)一定,和與另一個(gè)加數(shù)。

       。4)如果y=3x,y和x。

        2.揭示課題

        教師:我們已經(jīng)學(xué)過正比例的一些知識,應(yīng)用這些知識可以解決生活中的實(shí)際問題。這節(jié)課,我們就來學(xué)習(xí)"正比例的應(yīng)用"。

        二、合作交流,探索新知

        1.用課件出示例3

        教師:這幅圖告訴我們一個(gè)什么事情?需要解決什么問題?

        教師:先獨(dú)立思考,再小組合作交流,看能想出哪些方法解決這個(gè)問題。

        2.全班交流解答方法

        指導(dǎo)學(xué)生思考出:

       。1)195÷5×8=312(元),先求每份報(bào)紙的單價(jià),再求8份報(bào)紙的總價(jià),就是李老師應(yīng)付給郵局的錢。

       。2)195÷(5÷8)=312(元),先求5份報(bào)紙是8份報(bào)紙的幾分之幾,即195元占李老師所付錢的幾分之幾,最后求出李老師所付的錢。

        (3)195×(8÷5)=312(元),先求出8份報(bào)紙是5份報(bào)紙的幾倍,再把195元擴(kuò)大相同的倍數(shù)后,結(jié)果就是李老師所付的`錢。

        3.嘗試用正比例知識解答

        如果有學(xué)生想出用正比例方法解答,教師可以直接問:"你為什么要這樣解?"讓學(xué)生說出解題理由后再歸納其方法;如果學(xué)生沒想到用正比例知識解答,教師可作如下引導(dǎo)。

        教師:除了這些解題方法外,我們還會用正比例方法解答嗎?請同學(xué)們用學(xué)過的有關(guān)正比例的知識思考:

        (1)題中有哪兩種相關(guān)聯(lián)的量?

       。2)題中什么量是不變的?一定的?

       。3)題中這兩種相關(guān)聯(lián)的量是什么關(guān)系?

        引導(dǎo)學(xué)生分析出:題中有所訂報(bào)紙份數(shù)和所付總錢數(shù)這兩個(gè)相關(guān)聯(lián)的量,它們的關(guān)系是所付總錢數(shù)÷所訂報(bào)紙份數(shù)=每份報(bào)紙單價(jià),而題中的每份報(bào)紙單價(jià)一定,因此所付總錢數(shù)和所訂報(bào)紙份數(shù)成正比例關(guān)系。

        隨學(xué)生的回答,教師可同步板書:

        教師:運(yùn)用我們前面所學(xué)的正比例知識,同學(xué)們會解答嗎?準(zhǔn)備怎樣列比例式?

        引導(dǎo)學(xué)生討論后回答,先要把李老師應(yīng)付的錢數(shù)設(shè)為x元,再根據(jù)所付總錢數(shù)所訂份數(shù)=每份報(bào)紙單價(jià)的關(guān)系式,列式為1955=x8。

        教師:同學(xué)們會計(jì)算嗎?把這個(gè)比例式計(jì)算出來。

        學(xué)生解答。

        教師:解答得對不對呢?你準(zhǔn)備怎樣驗(yàn)算?

        學(xué)生討論驗(yàn)算方法,教師引導(dǎo):把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它們的比值相等,與題意相符,所以所求的解是正確的。

        三、課堂活動

        1.出示教科書第49頁的例1圖和補(bǔ)充條件

        竹竿長(m)26…

        影子長(m)39…

        教師:在這個(gè)表中有哪兩種量?它們相關(guān)聯(lián)嗎?它們成什么關(guān)系?你是根據(jù)什么判斷的?

        教師出示問題:小明和小剛測量出旗桿影子長21m,請問旗桿有多高呢?根據(jù)剛才我們判斷的比例關(guān)系,你能列出等式嗎?

        學(xué)生獨(dú)立思考解答,討論交流。

        2.小結(jié)方法

        教師:你覺得我們在用正比例知識解決上面兩個(gè)問題的時(shí)候,步驟是怎樣的?(初步歸納,不求學(xué)生強(qiáng)記,只求理解。)

       。1)設(shè)所求問題為x。

       。2)判斷題中的兩個(gè)相關(guān)聯(lián)的量是否成正比例關(guān)系。

       。3)列出比例式。

       。4)解比例,驗(yàn)算,寫答語。

        四、練習(xí)應(yīng)用

        完成練習(xí)十二的5,6,7題。

        五、課堂小結(jié)

        這節(jié)課我們學(xué)習(xí)了什么知識?你有什么收獲?

      正比例教學(xué)設(shè)計(jì)8

        教學(xué)要求:

        1、使學(xué)生認(rèn)識正比例關(guān)系的意義,理解,掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義間斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。

        2、進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。

        教學(xué)過程:

        一、復(fù)習(xí)鋪墊

        1、說出下列每組數(shù)量之間的.關(guān)系。

       。1)速度時(shí)間路程

       。2)單價(jià)數(shù)量總價(jià)

       。3)工作效率工作時(shí)間工作總量

        2、引入新課

        我們已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系,這節(jié)課開始,我們就來研究和認(rèn)識這種變化規(guī)律。今天,我們先認(rèn)識正比例關(guān)系的意義。

        二、教學(xué)新課

        1、教學(xué)例1。

        出示例1。讓學(xué)生計(jì)算,在課本上填表。

        讓學(xué)生觀察表里兩種量變化的數(shù)據(jù),思考。

        (1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化的?

        (2)路程和時(shí)間相對應(yīng)數(shù)值的比的比值各是多少?這兩種量變化有什么規(guī)律?

        引導(dǎo)學(xué)生進(jìn)行討論。

        提問:這里比值50是什么數(shù)量?(誰能說出它的數(shù)量關(guān)系式?)

        想一想,這個(gè)式子表示的是什么意思?

        2、教學(xué)例2

        出示例2和想一想

        要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。

        學(xué)生觀察思考后,指名回答。然后再提問,這兩種數(shù)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?

        比值1.6是什么數(shù)量,你能用數(shù)量關(guān)系式表示出來嗎?

        誰來說說這個(gè)式子表示的意思?

        3、概括正比例的意義。

        像例1、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢?請同學(xué)樣看課本第40頁最后一節(jié)。

        4、具體認(rèn)識

       。1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎?為什么?

        例2里的兩種量是不是成正比例的量?為什么?

       。2)做練習(xí)八第1題。

        5、教學(xué)例3

        出示例3,讓學(xué)生思考/

        提問:怎樣判斷是不是成正比例?

        請同學(xué)們看一看例3,書上怎樣判斷的,我們說得對不對。

        強(qiáng)調(diào):關(guān)鍵是列出關(guān)系式,看是不是比值一定。

        三、鞏固練習(xí)

        1、做練一練第1題。

        指名學(xué)生口答,說明理由。

        2、做練一練第2題。

        指名口答,并要求說明理由。

        3、做練習(xí)八第2題(小黑板)

        讓學(xué)生把成正比例關(guān)系的先勾出來。

        指名口答,選擇幾題讓學(xué)生說一說怎樣想的?

        四、課堂小結(jié)

        這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示Y和X這兩種相關(guān)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?

        五、家庭作業(yè)。

      正比例教學(xué)設(shè)計(jì)9

        教學(xué)目標(biāo):

        1.初步理解正比例的意義,會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

        2.使學(xué)生在認(rèn)識正比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模式,進(jìn)一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。

        教學(xué)重點(diǎn):

        會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

        教學(xué)難點(diǎn):

        會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

        預(yù)習(xí)指導(dǎo):

        一、自學(xué)教材。

        閱讀教材第62~63頁。

        二、檢查學(xué)習(xí)。

        1.怎樣兩個(gè)量成正比例?

        2.完成"試一試"。

        教學(xué)準(zhǔn)備:

        課件和口算題。

        教學(xué)過程:

        一、導(dǎo)入

        談話:通過將近六年的學(xué)習(xí),我們已經(jīng)了解了一些數(shù)量之間的關(guān)系,例如行程問題中的速度、時(shí)間、路程之間的關(guān)系,你知道這三個(gè)量之間的關(guān)系嗎?再如購物問題中單價(jià)、數(shù)量、總價(jià)之間的關(guān)系,你知道這三個(gè)量之間的關(guān)系嗎?這個(gè)單元我們要用一種新的觀點(diǎn)為,更深入地研究數(shù)量之間的關(guān)系。什么觀點(diǎn)呢?事物變化的觀點(diǎn),讓一些量變起來,從變化中發(fā)現(xiàn)規(guī)律。

        二、教學(xué)例1 1.課件出示例1的表

       、趴匆豢,表中有哪兩種量?這兩種量的數(shù)值是怎樣變化的?

       、票碇杏新烦毯蜁r(shí)間這兩種量,通過觀察數(shù)據(jù)我們可以發(fā)現(xiàn)這兩種量是有關(guān)聯(lián)的,時(shí)間變化,路程也隨著變化。

        2.那么這兩種量的變化有沒有什么規(guī)律呢?下面我們來作進(jìn)一步的研究。建議大家可以寫出幾組相對應(yīng)的路程和時(shí)間的比,看一看你有什么發(fā)現(xiàn)。

        3.我們可以寫出這么幾組路程和對應(yīng)時(shí)間的比。

        ⑴發(fā)現(xiàn)了它們的比值都是80,大家想一想,這個(gè)比值80表示什么呢?這個(gè)規(guī)律能不能用一個(gè)式子來表示?

       、七@個(gè)比值80就表示汽車行駛的速度,從上面可以看出這個(gè)速度是相同的,一定的,因此可以用這樣一個(gè)式子來表示這個(gè)規(guī)律

       、峭瑢W(xué)們,在這個(gè)題目中,路程和時(shí)間是兩種相關(guān)聯(lián)的量,時(shí)間變化,路程也隨著變化,當(dāng)路程和對應(yīng)時(shí)間的比的比值總是一定(也就是速度一定)時(shí),我們就說行駛的路程和時(shí)間成正比例,行駛的路程和時(shí)間是成正比例的量。

        課件出示:路程和時(shí)間成正比例。

       、痊F(xiàn)在你能完整地說一說表中路程和時(shí)間成什么關(guān)系嗎?

        4.剛才我們初步認(rèn)識了正比例的關(guān)系,接著我們繼續(xù)來看下面這個(gè)題目,教案《正比例意義教學(xué)設(shè)計(jì)》。

        ⑴課件出示"試一試"

       、普埓蠹蚁雀鶕(jù)題目里的信息把表中的數(shù)據(jù)填完整,然后說一說總價(jià)是隨著哪個(gè)量的變化而變化的?

        課件出示表中的數(shù)據(jù)。

       、菑谋碇形覀兛梢钥闯鲢U筆的總價(jià)是隨著購買數(shù)量的變化而變化的。

        集體交流:

        ⑷我們先來看第2個(gè)問題,可以寫出這么幾組對應(yīng)的總價(jià)和數(shù)量的比=0.3、=0.3…它們的比值相等,你寫對了嗎?

       、稍倏吹3個(gè)問題,這個(gè)比值表示的是鉛筆的單價(jià),我們可以用總價(jià):數(shù)量=單價(jià)(一定)這個(gè)式子來表示三者之間的關(guān)系。

        小結(jié):鉛筆的總價(jià)和數(shù)量成正比例,因?yàn)榭們r(jià)和數(shù)量是兩種相關(guān)聯(lián)的`量,數(shù)量變化,總價(jià)也隨著變化,當(dāng)總價(jià)和是對應(yīng)數(shù)量的比的比值總是一定(也就是單價(jià)一定)時(shí),我們就說鉛筆的總價(jià)和購買的數(shù)量成正比例,鉛筆的總價(jià)和購買的數(shù)量是成正比例的量。

        ⑹你能完整地這樣說給你的同桌聽一聽嗎?

       、送瑢W(xué)們,我們通過以上的兩個(gè)例子認(rèn)識了正比例的關(guān)系,想一想,如果用字母x和y分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么正比例的關(guān)系可以用怎樣的式子表示?

        課件出示課題。

        ⑻回顧一下,我們是根據(jù)什么來判斷兩種數(shù)量能成正比例的?

        指出:我們可以根據(jù)兩種相關(guān)聯(lián)的量的比值是不是一定來判斷兩種數(shù)量能不能成正比例。

        5.完成"練一練"

       、耪埓蠹腋鶕(jù)表中的數(shù)據(jù)判斷生產(chǎn)零件的數(shù)量和時(shí)間成什么比例?并說說為什么?

        ⑵生產(chǎn)零件的數(shù)量和時(shí)間成正比例,因?yàn)樯a(chǎn)零件的數(shù)量和時(shí)間是兩種相關(guān)聯(lián)的量,時(shí)間變化,零件的數(shù)量也隨著變化,當(dāng)生產(chǎn)零件的數(shù)量和對應(yīng)時(shí)間的比的比值總是一定(也就是每小時(shí)生產(chǎn)零件的個(gè)數(shù)一定)時(shí),我們就說生產(chǎn)零件的數(shù)量和時(shí)間成正比例,生產(chǎn)零件的數(shù)量和時(shí)間是成正比例的量。

        小結(jié):教師:同學(xué)們,今天我們學(xué)習(xí)了正比例的意義,你知道判斷兩種相關(guān)聯(lián)的量是否成正比例的方法了嗎?

        三、練習(xí)

        1.完成練習(xí)十三第1題。

        請大家繼續(xù)看課本66頁第1題

        2.完成練習(xí)十三第2題

        ⑴繼續(xù)看第2題,請你判斷,同一時(shí)間,物體的高度和影長成正比例嗎?為什么?

       、仆粫r(shí)間,物體的高度和影長成正比例,因?yàn)槊看挝矬w的高度和它對應(yīng)的影長的比值都是三分之五,是一定的。

        3.完成練習(xí)十三第3題(課件出示題目)

        ⑴課件出示放大后的三個(gè)正方形、

        ⑵大家看一看,你是這樣畫的嗎?

       、墙又埻瑢W(xué)們對照表格計(jì)算出放大后每個(gè)正方形的周長和面積。

        校對學(xué)生做的情況。

       、日埓蠹腋鶕(jù)表中的數(shù)據(jù)討論下面兩個(gè)問題。

       、僬叫蔚闹荛L與邊長成正比例嗎?為什么?

        ②正方形的面積與邊長成正比例嗎?為什么?

        四、總結(jié)。

        通過計(jì)算正方形周長與邊長的比值,我們可以判斷正方形的周長與邊長成正比例,因?yàn)樗鼈兊拿拷M比值都相等,都是4;同樣通過計(jì)算正方形面積與邊長的比值,我們可以判斷它們不成正比例,因?yàn)樗鼈兠拷M的比值是不相同的,也就是說是不一定的。

        板書設(shè)計(jì):

        正比例的意義

        路程和時(shí)間是兩種相關(guān)聯(lián)的量,

        時(shí)間變化,路程也隨著變化,當(dāng)路程和對應(yīng)時(shí)間的比的比值總是一定(也就是速度一定)時(shí),

        我們說行駛的路程和時(shí)間成正比例,行駛的路程和時(shí)間是成正比例的量。

      正比例教學(xué)設(shè)計(jì)10

        教學(xué)目標(biāo)

       。ㄒ唬┙虒W(xué)知識點(diǎn)

        1、認(rèn)識正比例函數(shù)的意義。

        2、掌握正比例函數(shù)解析式特點(diǎn)。

        3、理解正比例函數(shù)圖象性質(zhì)及特點(diǎn)。

        4、能利用所學(xué)知識解決相關(guān)實(shí)際問題。

        教學(xué)重點(diǎn)

        1、理解正比例函數(shù)意義及解析式特點(diǎn)。

        2、掌握正比例函數(shù)圖象的性質(zhì)特點(diǎn)。

        3、能根據(jù)要求完成轉(zhuǎn)化,解決問題。

        教學(xué)難點(diǎn)

        正比例函數(shù)圖象性質(zhì)特點(diǎn)的掌握。

        教學(xué)過程

        Ⅰ、提出問題,創(chuàng)設(shè)情境

        一九九六年,鳥類研究者在芬蘭給一只燕鷗?鳥)套上標(biāo)志環(huán)。4個(gè)月零1周后人們在2.56萬千米外的澳大利亞發(fā)現(xiàn)了它。

        1、這只百余克重的小鳥大約平均每天飛行多少千米(精確到10千米)?

        2、這只燕鷗的行程y(千米)與飛行時(shí)間x(天)之間有什么關(guān)系?

        3、這只燕鷗飛行1個(gè)半月的行程大約是多少千米?

        我們來共同分析:

        一個(gè)月按30天計(jì)算,這只燕鷗平均每天飛行的路程不少于:

        ÷(30×4+7)≈200(km)

        若設(shè)這只燕鷗每天飛行的路程為200km,那么它的行程y(千米)就是飛行時(shí)間x(天)的函數(shù)。函數(shù)解析式為:

        y=200x(0≤x≤127)

        這只燕鷗飛行1個(gè)半月的行程,大約是x=45時(shí)函數(shù)y=200x的值。即

        y=200×45=9000(km)

        以上我們用y=200x對燕鷗在4個(gè)月零1周的飛行路程問題進(jìn)行了刻畫。盡管這只是近似的,但它可以作為反映燕鷗的行程與時(shí)間的對應(yīng)規(guī)律的一個(gè)模型。

        類似于y=200x這種形式的函數(shù)在現(xiàn)實(shí)世界中還有很多。它們都具備什么樣的特征呢?我們這節(jié)課就來學(xué)習(xí)。

       、颉(dǎo)入新課

        首先我們來思考這樣一些問題,看看變量之間的對應(yīng)規(guī)律可用怎樣的函數(shù)來表示?這些函數(shù)有什么共同特點(diǎn)?

        1、圓的周長L隨半徑r的大小變化而變化。

        2、鐵的密度為7.8g/cm3。鐵塊的質(zhì)量m(g)隨它的體積V(cm3)的大小變化而變化。

        3、每個(gè)練習(xí)本的厚度為0.5cm。一些練習(xí)本摞在一些的總厚度h(cm)隨這些練習(xí)本的本數(shù)n的變化而變化。

        4、冷凍一個(gè)0℃的物體,使它每分鐘下降2℃。物體的溫度T(℃)隨冷凍時(shí)間t(分)的變化而變化。

        解:

        1、根據(jù)圓的周長公式可得:L=2r。

        2、依據(jù)密度公式p=可得:m=7.8V。

        3、據(jù)題意可知:h=0.5n。

        4、據(jù)題意可知:T=—2t。

        我們觀察這些函數(shù)關(guān)系式,不難發(fā)現(xiàn)這些函數(shù)都是常數(shù)與自變量乘積的形式,和y=200x的形式一樣。

        一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional func—tion),其中k叫做比例系數(shù)。

        我們現(xiàn)在已經(jīng)知道了正比例函數(shù)關(guān)系式的特點(diǎn),那么它的圖象有什么特征呢?

        [活動一]

        活動內(nèi)容設(shè)計(jì):

        畫出下列正比例函數(shù)的圖象,并進(jìn)行比較,尋找兩個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn),考慮兩個(gè)函數(shù)的變化規(guī)律。

        1、y=2x2、y=—2x

        活動設(shè)計(jì)意圖:

        通過活動,了解正比例函數(shù)圖象特點(diǎn)及函數(shù)變化規(guī)律,讓學(xué)生自己動手、動口、動腦,經(jīng)歷規(guī)律發(fā)現(xiàn)的整個(gè)過程,從而提高各方面能力及學(xué)習(xí)興趣。

        教師活動:

        引導(dǎo)學(xué)生正確畫圖、積極探索、總結(jié)規(guī)律、準(zhǔn)確表述。

        學(xué)生活動:

        利用描點(diǎn)法正確地畫出兩個(gè)函數(shù)圖象,在教師的引導(dǎo)下完成函數(shù)變化規(guī)律的探究過程,并能準(zhǔn)確地表達(dá)出,從而加深對規(guī)律的理解與認(rèn)識。

        活動過程與結(jié)論:

        1、函數(shù)y=2x中自變量x可以是任意實(shí)數(shù)。列表表示幾組對應(yīng)值:

        x—3—2—

        y—6—4—

        畫出圖象如圖(1)。

        2、y=—2x的.自變量取值范圍可以是全體實(shí)數(shù),列表表示幾組對應(yīng)值:

        x—3—2—

        y6420—2—4—6

        畫出圖象如圖(2)。

        3、兩個(gè)圖象的共同點(diǎn):都是經(jīng)過原點(diǎn)的直線。

        不同點(diǎn):函數(shù)y=2x的圖象從左向右呈上升狀態(tài),即隨著x的增大y也增大;經(jīng)過第一、三象限。函數(shù)y=—2x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減小;經(jīng)過第二、四象限。

        嘗試練習(xí):

        在同一坐標(biāo)系中,畫出下列函數(shù)的圖象,并對它們進(jìn)行比較。

        1、y=x2、y=—x

        x—6—4—

        y=x—3—2—

        y=—x3210—1—2—3

        比較兩個(gè)函數(shù)圖象可以看出:兩個(gè)圖象都是經(jīng)過原點(diǎn)的直線。函數(shù)y=x的圖象從左向右上升,經(jīng)過三、一象限,即隨x增大y也增大;函數(shù)y=—x的圖象從左向右下降,經(jīng)過二、四象限,即隨x增大y反而減小。

        總結(jié)歸納正比例函數(shù)解析式與圖象特征之間的規(guī)律:

        正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線。當(dāng)x>0時(shí),圖象經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k

        正是由于正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條直線,我們可以稱它為直線y=kx。

        [活動二]

        活動內(nèi)容設(shè)計(jì):

        經(jīng)過原點(diǎn)與點(diǎn)(1,k)的直線是哪個(gè)函數(shù)的圖象?畫正比例函數(shù)的圖象時(shí),怎樣畫最簡單?為什么?

        活動設(shè)計(jì)意圖:

        通過這一活動,讓學(xué)生利用總結(jié)的正比例函數(shù)圖象特征與解析式的關(guān)系,完成由圖象到關(guān)系式的轉(zhuǎn)化,進(jìn)一步理解數(shù)形結(jié)合思想的意義,并掌握正比例函數(shù)圖象的簡單畫法及原理。

        教師活動:

        引導(dǎo)學(xué)生從正比例函數(shù)圖象特征及關(guān)系式的聯(lián)系入手,尋求轉(zhuǎn)化的方法。從幾何意義上理解分析正比例函數(shù)圖象的簡單畫法。

        學(xué)生活動:

        在教師引導(dǎo)啟發(fā)下完成由圖象特征到解析式的轉(zhuǎn)化,進(jìn)一步理解數(shù)形結(jié)合思想,找出正比例函數(shù)圖象的簡單畫法,并知道原由。

        活動過程及結(jié)論:

        經(jīng)過原點(diǎn)與點(diǎn)(1,k)的直線是函數(shù)y=kx的圖象。

        畫正比例函數(shù)圖象時(shí),只需在原點(diǎn)外再確定一個(gè)點(diǎn),即找出一組滿足函數(shù)關(guān)系式的對應(yīng)數(shù)值即可,如(1,k)。因?yàn)閮牲c(diǎn)可以確定一條直線。

       、。隨堂練習(xí)

        用你認(rèn)為最簡單的方法畫出下列函數(shù)圖象:

        1、y=x2、y=—3x

        解:除原點(diǎn)外,分別找出適合兩個(gè)函數(shù)關(guān)系式的一個(gè)點(diǎn)來:

        1、y= x(2,3)

        2、y=—3x(1,—3)

        小結(jié):

        本節(jié)課我們通過實(shí)例了解了正比例函數(shù)解析式的形式及圖象的特征,并掌握圖象特征與關(guān)系式的聯(lián)系規(guī)律,經(jīng)過思考、嘗試,知道了正比例函數(shù)不同表現(xiàn)形式的轉(zhuǎn)化方法,及圖象的簡單畫法,為以后學(xué)習(xí)一次函數(shù)奠定了基礎(chǔ)。

        課后作業(yè)

        習(xí)題11.2─1、2題。

      正比例教學(xué)設(shè)計(jì)11

        1.聯(lián)系生活,從生活中引入,激發(fā)了學(xué)生學(xué)習(xí)興趣。

        數(shù)學(xué)來源于生活,又服務(wù)于生活!稊(shù)學(xué)課程標(biāo)準(zhǔn)》明確要求“使學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親歷數(shù)學(xué)的過程”。程老師從學(xué)生所熟悉的生活中的例子入手,引導(dǎo)學(xué)生發(fā)現(xiàn)我們的身邊處處都有數(shù)學(xué)。如,新課開始時(shí),程老師利用“張紅想知道旗桿的高度”,從這樣一個(gè)學(xué)生身邊的例子引入,不僅讓學(xué)生感受了數(shù)學(xué)與生活的緊密聯(lián)系,還有效地設(shè)置了懸念,激發(fā)了學(xué)生學(xué)好本節(jié)課知識的.興趣和決心。

        2.有效地處理教材,讓學(xué)生親身經(jīng)歷數(shù)學(xué)模型的形成過程。

        《比例的意義》這部分知識比較枯燥,也比較抽象,不易讓學(xué)生直觀的理解,與實(shí)際生活較遠(yuǎn)。而程老師處理的很好,把無聲的、枯燥的教材進(jìn)行了有聲的、精彩的演繹。在這一節(jié)課中,程老師運(yùn)用各種方法,通過對同一比例不同大小的國旗的長寬比例的探究,運(yùn)用計(jì)算比值、課件演示、交流討論、自主寫出比例等等一系列的方法進(jìn)行由淺入深地自主探索,實(shí)現(xiàn)了學(xué)生對“比例的意義”這一知識的真正理解和運(yùn)用。

        3、服務(wù)于生活,回到生活中去,解決生活中的實(shí)際問題。

        在以上抽象出“數(shù)學(xué)模型”的基礎(chǔ)上讓學(xué)生進(jìn)行拓展應(yīng)用,體現(xiàn)“數(shù)學(xué)從生活中來,到生活中去的”思想,程老師在課的最后出示“大自然中的比例”,讓學(xué)生利用學(xué)到的知識解決生活中的實(shí)際問題,既讓學(xué)生感受了數(shù)學(xué)學(xué)習(xí)的價(jià)值,又和課的開始形成了呼應(yīng)。圓滿中結(jié)束本課的學(xué)習(xí),學(xué)習(xí)效果很好。

      正比例教學(xué)設(shè)計(jì)12

        教學(xué)內(nèi)容:

        本單元一共安排了三道例題和一個(gè)練習(xí)。先認(rèn)識正比例的意義,接著認(rèn)識正比例的圖象,再認(rèn)識反比例的意義,最后安排了一些鞏固練習(xí)和綜合練習(xí)。

        教材分析:

        本單元內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了比和比例等知識的基礎(chǔ)上進(jìn)行教學(xué)的,主要讓學(xué)生結(jié)合實(shí)際情境認(rèn)識成正比例和反比例的量。正、反比例的知識在日常生活和工農(nóng)業(yè)生產(chǎn)中有著廣泛的應(yīng)用,而且還是今后進(jìn)一步學(xué)習(xí)中學(xué)數(shù)學(xué)、物理、化學(xué)等知識的重要基礎(chǔ),因而學(xué)好這部分知識非常重要。通過學(xué)習(xí)這部分知識,還可以幫助加深對過去學(xué)過的數(shù)量關(guān)系的認(rèn)識,使學(xué)生初步會從變量的角度來認(rèn)識兩個(gè)量之間的關(guān)系,從而初步體會函數(shù)的思想。

        教學(xué)目標(biāo):

        1、使學(xué)生結(jié)合實(shí)際情境認(rèn)識成正比例和反比例的量,能根據(jù)正、反比例的意義判斷兩種相關(guān)聯(lián)的量是否成正比例和反比例。

        2、使學(xué)生初步認(rèn)識正比例的圖象是一條直線,能利用給出的具有正比例關(guān)系的數(shù)據(jù)在方格紙上畫出相應(yīng)的直線,能根據(jù)具有正比例關(guān)系的一個(gè)量的數(shù)值看圖估計(jì)另一個(gè)量的數(shù)值。

        3、使學(xué)生在認(rèn)識成正比例、反比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型,進(jìn)一步提升思維水平。

        4、使學(xué)生進(jìn)一步體會數(shù)學(xué)與日常生活的密切聯(lián)系,增強(qiáng)探索數(shù)學(xué)知識和規(guī)律的意識,養(yǎng)成積極主動哦參與學(xué)習(xí)活動的習(xí)慣,提高學(xué)好數(shù)學(xué)的自信心。

        教學(xué)重點(diǎn):

        認(rèn)識正、反比例的意義

        教學(xué)難點(diǎn):

        根據(jù)正、反比例的意義正確判斷兩種相關(guān)聯(lián)的量是否成正比例或反比例。

        課時(shí)安排:

        正比例和反比例(4課時(shí))

        第1課時(shí)

        教學(xué)內(nèi)容

        成正比例的量

        教材第62—63頁的例1和試一試,練一練和練習(xí)十三的第1—3題

        課型

        新授

        本單元教時(shí)數(shù):4本教時(shí)為第1教時(shí)備課日期月日

        教學(xué)目標(biāo)

        1、使學(xué)生經(jīng)歷從具體實(shí)例中認(rèn)識成正比例的量的過程,初步理解正比例的意義,學(xué)會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

        2、2、使學(xué)生在認(rèn)識成正比例的.量的過程中,初步體會數(shù)量之間的相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型,進(jìn)一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。。

        3、使、學(xué)生進(jìn)一步體會數(shù)學(xué)與日常生活的密切聯(lián)系,增強(qiáng)從生活現(xiàn)象中探索數(shù)學(xué)知識和規(guī)律的能力。

        教學(xué)重點(diǎn)

        使學(xué)生經(jīng)歷從具體實(shí)例中認(rèn)識成正比例的量的過程,初步理解正比例的意義,學(xué)會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

        教學(xué)難點(diǎn)

        根據(jù)正比例的意義正確判斷兩種相關(guān)聯(lián)的量是不是成正比例。

        教學(xué)準(zhǔn)備

        光盤課件

        教學(xué)過程設(shè)計(jì)

        教學(xué)內(nèi)容

        教師活動

        學(xué)生活動

        二次備課

        一、教學(xué)例1

        1、談話引出例1的表格

        2、這兩種量的數(shù)據(jù)是怎樣變化的?

        時(shí)間在擴(kuò)大,路程也隨著擴(kuò)大,時(shí)間在縮小,路程也在縮小。

        小結(jié):路程和時(shí)間是兩種相關(guān)聯(lián)餓量,時(shí)間在變化,路程也隨著變化。

        3、但是,你能發(fā)現(xiàn)什么呢?

        如果學(xué)生發(fā)現(xiàn)不了,就要求學(xué)生寫出幾組路程與時(shí)間的比,并求出比值。

        這個(gè)比值是什么呢?

        誰能用一句話來概括例1中的變化與不變

        4、介紹成正比例的量

        指名說說,表中有哪兩種量

        引導(dǎo)學(xué)生觀察,

        指名說一說。

        啟發(fā)學(xué)生從“變化”中尋找“不變”。

        學(xué)生試著回答,教師幫助完成。

        學(xué)生完整的說說路程和時(shí)間成正比例的量

        二、教學(xué)試一試

        1、出示教材試一試

        教師指導(dǎo)學(xué)生完成

        學(xué)試著完成,并交流回答四個(gè)問題。

        三、概括意義

        1、引導(dǎo)學(xué)生觀察例1和試一試,它們有什么共同點(diǎn)。

        2、概括正比例的意義,揭示課題(板書)

        3、用字母怎樣表示成正比例關(guān)系的兩種量呢?

        y:x=k(一定)

        觀察,說說自己的發(fā)現(xiàn)。

        學(xué)生完整的說一說例1和試一試成正比例關(guān)系。

        四、鞏固練習(xí)

        1、完成練一練

        2、練習(xí)十三第1題

        重點(diǎn)讓學(xué)生說出判斷的理由

        3、做練習(xí)十三第2題

        4、做練習(xí)十三第3題

        引導(dǎo)學(xué)生根據(jù)計(jì)算的結(jié)果來判斷。完成書上的問題

        重點(diǎn)讓學(xué)生理解:只有當(dāng)兩種相關(guān)聯(lián)的量的比值一定時(shí),它們才成正比例的量。

        獨(dú)立判斷,交流時(shí)說出判斷的理由。

        學(xué)生先各自算一算,交流,說出思考過程。

        指名判斷,交流時(shí)說出思考過程,其它同學(xué)進(jìn)行補(bǔ)充或糾正。

        學(xué)生理解題意,然后在書上畫一畫,算一算,填在書上。

        五、全課總結(jié)

        學(xué)習(xí)了什么?你有什么收獲?

        說一說

        板書

        正比例的意義

        兩種相關(guān)聯(lián)的量=k(一定)y和x就成正比例的量

        課后感受

        第2課時(shí)

        教學(xué)內(nèi)容

        正比例的意義及其圖像

        教材第63頁例2,隨后的練一練和練習(xí)十三的第4、5題

        課型

        新授

        本單元教時(shí)數(shù):4本教時(shí)為第2教時(shí)備課日期月日

        教學(xué)目標(biāo)

        1、使學(xué)生認(rèn)識正比例的圖象,并借助直觀的圖象加深對成正比例量的變化規(guī)律的認(rèn)識。

        2、使學(xué)生能利用給出的具有正比例關(guān)系的數(shù)據(jù)在方格紙上畫出相應(yīng)的直線,能根據(jù)具有正比例關(guān)系的一個(gè)量的數(shù)值看圖估計(jì)另一個(gè)量的數(shù)值。

        教學(xué)重點(diǎn)

        使學(xué)生認(rèn)識正比例的圖象,并借助直觀的圖象加深對成正比例量的變化規(guī)律的認(rèn)識。

        教學(xué)難點(diǎn)

        使學(xué)生能利用給出的具有正比例關(guān)系的數(shù)據(jù)在方格紙上畫出相應(yīng)的直線,能根據(jù)具有正比例關(guān)系的一個(gè)量的數(shù)值看圖估計(jì)另一個(gè)量的數(shù)值。

        教學(xué)準(zhǔn)備

        光盤課件

        教學(xué)過程設(shè)計(jì)

        教學(xué)內(nèi)容

        教師活動

        學(xué)生活動

        二次備課

        一、教學(xué)例2

        1、先出示例1的表格

        談話:同學(xué)們,像例1中成正比例的量的數(shù)據(jù),有時(shí)也可以用圖象的形式來表示。

        出示已標(biāo)出縱軸、橫軸以及相噶關(guān)信息的方格圖。教師先示范描一兩個(gè)點(diǎn)(邊講解邊示范),你們會描點(diǎn)嗎?

        引導(dǎo)學(xué)生觀察這些點(diǎn)的排布規(guī)律,并用直線連起來。

        提問:(1)圖中的a點(diǎn)表示1小時(shí)行80千米,b點(diǎn)表示5小時(shí)行400千米,你知道其它各點(diǎn)分別表示什么嗎?(任意指幾個(gè)點(diǎn)讓學(xué)生回答)

       。2)圖中所描的點(diǎn)在一條直線上嗎?

       。3)根據(jù)圖象判斷一下,這輛汽車2。5小時(shí)行駛多少千米?行駛440千米需要多少小時(shí)?

        學(xué)生描點(diǎn)。

        學(xué)生按要求操作完成。

        指名回答

        如果學(xué)生回答有困難,可以啟發(fā)先在橫軸上找到表示2.5小時(shí)的點(diǎn),并從這點(diǎn)起作縱軸的平行線,從而得到與已知圖象的交點(diǎn);再從交點(diǎn)起作橫軸的平行線,從而得到與縱軸的交點(diǎn);最后依據(jù)與縱軸的交點(diǎn)進(jìn)行估計(jì)。

        二、鞏固練習(xí)

        1、練一練

        學(xué)生做好后展示學(xué)生畫的圖象,共同評議

        問:你們畫出的表示打字時(shí)間和打字個(gè)數(shù)關(guān)系的圖象有什么特點(diǎn)?

        指名回答第(3)個(gè)問題

        追問:你是怎樣判斷打750個(gè)字用多少分鐘的?估計(jì)7分鐘、10。5分鐘呢?打450個(gè)字、625個(gè)字各用幾分鐘?

        2、練習(xí)十三第4題

        既可以根據(jù)圖象的特點(diǎn)說明,也可以從圖象上選取幾個(gè)點(diǎn),求出比值來作判斷。

        第二題要求估計(jì),答案出入是允許的

        3、第5題

        先讓學(xué)生獨(dú)立完成,在組織交流,幫助學(xué)生進(jìn)一步明確方法,加深認(rèn)識。

        學(xué)生獨(dú)立完成

        指名回答第(2)個(gè)問題

        學(xué)生相互間說一說

        學(xué)生回答,要說明理由

        討論第(4)小題后,引導(dǎo)學(xué)生在提出一些類似的問題并進(jìn)行解答。

        三、全課總結(jié)

        今天學(xué)習(xí)了什么?你有了什么新的認(rèn)識?你知道今后還可以根據(jù)什么來判斷兩種量是否成正比例的量嗎?

        說說,議論議論。

        板書

        正比例的意義及其圖像

        例2(圖像)

        課后感受

      正比例教學(xué)設(shè)計(jì)13

        尊敬的各位評委:

        你們好!我將從教材分析、學(xué)況分析、教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教法學(xué)法、教學(xué)準(zhǔn)備、教學(xué)過程、效果預(yù)測幾個(gè)方面對本課進(jìn)行介紹。

        一、教材分析

        1、教學(xué)內(nèi)容:人教版六年級下冊P39正比例的意義。

        2、教材的地位和作用:這部分內(nèi)容是在學(xué)生學(xué)習(xí)了比和比例的基礎(chǔ)上進(jìn)行教學(xué)的,著重使學(xué)生理解正比例的意義。正比例關(guān)系是比較重要的一種數(shù)量關(guān)系,學(xué)生理解并掌握這種數(shù)量關(guān)系,可以加深對比例的理解,并能應(yīng)用它解決一些簡單的實(shí)際問題。同時(shí)通過正比例的教學(xué)進(jìn)一步滲透函數(shù)思想,為學(xué)生今后學(xué)習(xí)打下基礎(chǔ)。

        3、教學(xué)重點(diǎn),難點(diǎn)、關(guān)鍵:

        教學(xué)重點(diǎn)是理解正比例的意義,難點(diǎn)是能準(zhǔn)確判斷成正比例的量,關(guān)鍵是發(fā)現(xiàn)正比例量的特征。

        4、教學(xué)目標(biāo):

        根據(jù)本課的具體內(nèi)容,新課標(biāo)有關(guān)要求和學(xué)生的年齡特點(diǎn),我從知識技能、過程與方法、情感態(tài)度三個(gè)方面確立了本課的教學(xué)目標(biāo)。

        知識與技能:學(xué)生認(rèn)識成正比例的量以及正比例關(guān)系,并能正確判斷成正比例的量。

        過程與方法:學(xué)生經(jīng)歷從具體實(shí)例中認(rèn)識成正比例的量的過程,通過察、比較、分析、歸納等數(shù)學(xué)活動,發(fā)現(xiàn)正比例量的特征,并嘗試抽象概括正比例的意義。

        情感態(tài)度:在主動參與數(shù)學(xué)活動的過程中,進(jìn)一步體會數(shù)學(xué)和日常生活的密切聯(lián)系,增強(qiáng)從生活現(xiàn)象中探索數(shù)學(xué)知識和規(guī)律的意識。

        二、學(xué)況分析

        六年級學(xué)生具備一定的分析綜合、抽象概括的數(shù)學(xué)能力。在學(xué)習(xí)正比例之前已經(jīng)學(xué)習(xí)過比和比例,以及常見的數(shù)量關(guān)系。本節(jié)課在此基礎(chǔ)上,進(jìn)一步理解比值一定的變化規(guī)律。學(xué)生容易掌握的是:判斷有具體數(shù)據(jù)的兩個(gè)量是否成正比例;比較難掌握的是:離開具體數(shù)據(jù),判斷兩個(gè)量是否成正比例。

        三、教法

        遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,通過游戲引入、自主探究、合作學(xué)習(xí)等方式進(jìn)行教學(xué),讓學(xué)生在自主、合作、探究的過程中歸納正比例的特征。

        四、學(xué)法

        引導(dǎo)學(xué)生在觀察比較的基礎(chǔ)上,獨(dú)立思考、小組合作交流。具體表現(xiàn)在學(xué)會思考,學(xué)會觀察,學(xué)會表達(dá),并對學(xué)生進(jìn)行激勵(lì)性的評價(jià),讓學(xué)生樂于說,善于說。

        五、教學(xué)過程

        本節(jié)課我安排了六個(gè)教學(xué)環(huán)節(jié)

        第一個(gè)環(huán)節(jié):游戲?qū),激發(fā)興趣

        用游戲的方法將學(xué)生帶入輕松愉快的學(xué)習(xí)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣,活躍課堂氣氛,同時(shí)也為后面教學(xué)做好了鋪墊,使學(xué)生很快進(jìn)入學(xué)習(xí)狀態(tài)。

        第二環(huán)節(jié):引導(dǎo)觀察,啟發(fā)思考

        教學(xué)中讓學(xué)生自己計(jì)算游戲得分,并引導(dǎo)學(xué)生進(jìn)行觀察,從而得出:得分隨著贏的次數(shù)的`變化而變化,他們是兩種相關(guān)聯(lián)的量,初步滲透正比例的概念。

        第三環(huán)節(jié):創(chuàng)設(shè)情景,觀察實(shí)驗(yàn)

        用多媒體呈現(xiàn)數(shù)據(jù)的獲取過程,讓學(xué)生直觀地感受到水的體積和高度是兩個(gè)相關(guān)聯(lián)的量以及二者之間的變化規(guī)律。

        第四環(huán)節(jié):探究成正比例的量

        學(xué)生在反復(fù)觀察、思考,討論、交流的過程中自己建立概念,深刻的體驗(yàn)使學(xué)生感受到獲得新知的樂趣。

        第五環(huán)節(jié):鞏固練習(xí),拓展提高

        第六環(huán)節(jié):全課小結(jié)

        六、效果預(yù)測

        在教學(xué)的始終,我一直引導(dǎo)學(xué)生主動探索正比例的意義,加上課件的輔助教學(xué)和課堂練習(xí),學(xué)生在理解掌握并且運(yùn)用新知上,一定會輕松自如。所以,我預(yù)測本節(jié)課學(xué)生在知識、能力和情感上都能全面促進(jìn),達(dá)到預(yù)定的教學(xué)目的。

        本節(jié)課在教學(xué)設(shè)計(jì)和具體環(huán)節(jié)的安排上,可能還存在不足的地方,懇請各位評委給予批評指正。

      正比例教學(xué)設(shè)計(jì)14

        【教學(xué)目標(biāo)】

        1、使學(xué)生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

        2、培養(yǎng)學(xué)生概括能力和分析判斷能力。

        3、培養(yǎng)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題的能力。

        【教學(xué)重難點(diǎn)】

        重點(diǎn):

        成正比例的量的特征及其斷方法。

        難點(diǎn):

        理解兩個(gè)變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量之間的變化規(guī)律。

        【教學(xué)過程】

        一、四顧舊知,復(fù)習(xí)鋪墊

        商店里有兩種包裝的襪子,一種是5雙一包的,售價(jià)為25元,一種是8雙一包的,售價(jià)為32元。哪種襪子更便宜?

        學(xué)生獨(dú)立完成后師提問:你們是怎樣比較的?

        生:我先求出每種襪子的單價(jià),再進(jìn)行比較。

        師:你是根據(jù)哪個(gè)數(shù)量關(guān)系式進(jìn)行計(jì)算的?

        生:因?yàn)榭們r(jià)=單價(jià)×數(shù)量,所以單價(jià)=總價(jià)÷數(shù)量。

        師:如果單價(jià)不變,商品的總價(jià)和數(shù)量的變化有什么規(guī)律呢?這節(jié)課,我們就來研究正比例。(板書:正比例)

        二、引導(dǎo)探索,學(xué)習(xí)新知

        1、教學(xué)例1,學(xué)習(xí)正比例的意義。

        (1)結(jié)合情境圖,觀察表中的數(shù)據(jù),認(rèn)識兩種相關(guān)聯(lián)的量。師出示自學(xué)提示:表中有哪兩種量?總價(jià)是怎樣隨著數(shù)量的變化而變化的?學(xué)生自學(xué)并在組內(nèi)交流。全班交流。

        (2)認(rèn)識相關(guān)聯(lián)的量。明確:像這樣,一種量變化,另一種量也隨著變化,這兩種量叫做相關(guān)聯(lián)的量。

        2、計(jì)算表中的數(shù)據(jù),理解正比例的意義。

        (1)計(jì)算相應(yīng)的總價(jià)與數(shù)量的比值,看看有什么規(guī)律。學(xué)生計(jì)算后匯報(bào):===…=3、5,每一組數(shù)據(jù)的比值一定。

        (2)說一說,每一組數(shù)據(jù)的比值表示什么?(彩帶的單價(jià),也就是彩帶的單價(jià)是一個(gè)固定的數(shù))

        (3)請學(xué)生用公式把彩帶的總價(jià)、數(shù)量、單價(jià)之間的關(guān)系表示出來。

        (4)明確成正比例的量及正比例關(guān)系的意義。兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個(gè)數(shù)的比值一定,這兩種量就叫做成正比例的'量,它們的關(guān)系叫做正比例關(guān)系。如果用字母y和x表示兩種相關(guān)聯(lián)的量,用字母k表示它們的比值(一定),正比例關(guān)系可以用下面的式子表示:

        3、列舉并討論成正比例的量。

        (1)生活中還有哪些成正比例的量?預(yù)設(shè):速度一定,路程與時(shí)間成正比例;長方形的寬一定,面積和長成正比例。

        (2)小結(jié):成正比例的量必須具備哪些條件?哪個(gè)條件是關(guān)鍵?

        兩種量中相對應(yīng)的兩個(gè)數(shù)的比值一定,這是關(guān)鍵。

        4、認(rèn)識正比例圖象。(課件出示例1的表格及正比例圖象)

        (1)觀察表格和圖象,你發(fā)現(xiàn)了什么?

        (2)把數(shù)對(10,35)和(12,42)所在的點(diǎn)描出來,再和上面的圖象連起來并延長,你還能發(fā)現(xiàn)什么?

        無論怎樣延長,得到的都是直線。

        (3)從正比例圖象中,你知道了什么?

        生1:可以由一個(gè)量的值直接找到對應(yīng)的另一個(gè)量的值。

        生2:可以直觀地看到成正比例的量的變化情況。

        (4)利用正比例圖象解決問題。

        不計(jì)算,根據(jù)圖象判斷,如果買9m彩帶,總價(jià)是多少?49元能買多少米彩帶?

        小明買的彩帶的米數(shù)是小麗的2倍,他花的錢是小麗的幾倍?預(yù)設(shè)生:因?yàn)樵趩蝺r(jià)一定的情況下,數(shù)量與總價(jià)成正比例關(guān)系,小明買的彩帶的米數(shù)是小麗的2倍,他花的錢也應(yīng)是小麗的2倍。設(shè)計(jì)意圖:先從觀察圖象入手,引導(dǎo)學(xué)生直觀認(rèn)識相關(guān)聯(lián)的量,再結(jié)合表中的數(shù)據(jù),引導(dǎo)學(xué)生發(fā)現(xiàn)總價(jià)與數(shù)量的比值一定,使學(xué)生理解正比例的意義,最后結(jié)合正比例圖象,把數(shù)據(jù)與點(diǎn)聯(lián)系起來,根據(jù)圖象,不用計(jì)算就能找到一個(gè)量的值所對應(yīng)的另一個(gè)量的值,使學(xué)生在解決問題的同時(shí),感受數(shù)形結(jié)合思想。

        三、課堂練習(xí):

        1、P46“做一做”

        2、練習(xí)九第1、3~7題

      正比例教學(xué)設(shè)計(jì)15

        【教學(xué)內(nèi)容】

        《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級下冊45頁~46頁

        【教學(xué)目標(biāo)】

        1.通過觀察、比較、判斷、歸納等方法,幫助學(xué)生理解正比例的意義。

        2.培養(yǎng)學(xué)生用事物相互聯(lián)系和發(fā)展變化的觀點(diǎn)來分析問題,使學(xué)生能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。

        3.用 表示變量之間的關(guān)系,初步滲透函數(shù)思想。

        【教學(xué)重點(diǎn)】理解正比例的意義。

        【教學(xué)難點(diǎn)】引導(dǎo)學(xué)生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的比值一定,概括出成正比例的概念。

        【教具準(zhǔn)備】

        課件 一.創(chuàng)設(shè)情境 導(dǎo)入新課

        同學(xué)們,再有兩個(gè)多月的時(shí)間,我們就小學(xué)畢業(yè)了。學(xué)習(xí)了六年的數(shù)學(xué),有一樣?xùn)|西跟我們最親密,那就是數(shù)學(xué)書。

       。◣熌贸鲆槐緮(shù)學(xué)書)大家看,這是一本數(shù)學(xué)書、2本、3本、 隨著書的本數(shù)在增多,什么也在變化?

        (學(xué)生說什么,教師就引導(dǎo)學(xué)生理解:如書的本數(shù)越多,書的總價(jià)就越厚高,說明書的本數(shù)和書的總價(jià)有關(guān)系,我們就說:書的本數(shù)和書的總價(jià)是兩個(gè)相關(guān)聯(lián)的量)板書:相關(guān)聯(lián)的量

        由此可以看出:書的厚度、重量、價(jià)格都和書的本數(shù)是相關(guān)聯(lián)的量,他們隨著書的本數(shù)的變化而變化,這里面蘊(yùn)含著一個(gè)重要的觀點(diǎn),那就是變化的觀點(diǎn),今天我們就來研究數(shù)量間的變化,去發(fā)現(xiàn)變化中的規(guī)律。

       。ㄔO(shè)計(jì)意圖:由和學(xué)生最為親密的數(shù)學(xué)課本入手這一例子,引出了兩個(gè)相關(guān)聯(lián)的量,由于事例為學(xué)生所熟悉,故很快將學(xué)生帶入輕松愉快的學(xué)習(xí)情境,使學(xué)生及時(shí)進(jìn)入狀態(tài),手腦并用,課堂氣氛活躍。同時(shí)使學(xué)生感悟到生活中處處有數(shù)學(xué),數(shù)學(xué)來源于生活。)

        二、探索交流 解決問題

        (一)探究成正比例的量

        課前,老師選擇了書的本數(shù)和價(jià)格這兩個(gè)相關(guān)聯(lián)的量,并制作了一張統(tǒng)計(jì)表,我們一起來看

        看。

        1.教師引領(lǐng) 初步感知——教學(xué)例1 教師課件出示統(tǒng)計(jì)表

        (1)師:表中有哪兩個(gè)相關(guān)聯(lián)的量?

        生:總價(jià)與本數(shù)

       。2)師:總價(jià)是怎樣隨著數(shù)量的變化而變化的?

        生:(當(dāng)本數(shù)是1本,總價(jià)是5元,當(dāng)本數(shù)是2本,總價(jià)是10元.本數(shù)變化,總價(jià)也隨著變化.從左住右看,本數(shù)增加,總價(jià)也隨著增加;從右住左看,本數(shù)減少,總價(jià)也隨著減少.本數(shù)和總價(jià)是相關(guān)聯(lián)的兩種量.一種量變化,另一種量也隨著變化.)

       。3)師:總價(jià)與本數(shù)的變化有什么不變的規(guī)律? 預(yù)設(shè):方案1(學(xué)生若回答有困難)

        師啟發(fā):相應(yīng)的總價(jià)與本數(shù)的比分別是多少?比值是多少?你從中發(fā)現(xiàn)了什么規(guī)律嗎? 生:(5|1=5 10|2=5 15|3=5 20|4=5(相對應(yīng)的兩個(gè)數(shù)的比值一定)

        師:相對應(yīng)的兩個(gè)數(shù)的比值一定也就是書的單價(jià)一定。你能用一個(gè)數(shù)量關(guān)系式來表示總價(jià) 數(shù)量、單價(jià)之間的關(guān)系?

        生:總價(jià)|本數(shù)=單價(jià)(一定)師:為什么特意加上一定兩個(gè)字?

        生:因?yàn)椴还芸們r(jià)與本數(shù)怎么變,書的單價(jià)始終保持不變

        師:是的,這個(gè)很重要,下面繼續(xù)我們的探索之旅。路程與時(shí)間是不是也具有這樣的關(guān)系呢?

        預(yù)設(shè)方案2(學(xué)生能回答)生:一本書的價(jià)格不變

        師:也就是書的單價(jià)不變,單價(jià)不變,就是總價(jià)與數(shù)量的比值不變。

        師:相對應(yīng)總價(jià)與數(shù)量的比值是多少?你能用一個(gè)數(shù)量關(guān)系式表示他們之間關(guān)系嗎?

        生:總價(jià)|本數(shù)=單價(jià)(一定)師:為什么特意加上一定兩個(gè)字?

        生:因?yàn)椴还芸們r(jià)與本數(shù)怎么變,書的單價(jià)始終保持不變

        師:是的,這個(gè)很重要,下面繼續(xù)我們的探索之旅。路程與時(shí)間是不是也具有這樣的關(guān)系呢?(設(shè)計(jì)意圖:利用學(xué)生較熟悉的數(shù)量關(guān)系單價(jià)、數(shù)量、總價(jià),由學(xué)生觀察,找出規(guī)律。并借助教材中的三個(gè)問題,適時(shí)提問“總價(jià)與數(shù)量的變化中什么不發(fā)生變化?”引導(dǎo)學(xué)生用多種方式表征,初步感受“一個(gè)量增加,另一個(gè)量也隨著增加”以及一個(gè)不變的量(比值一定),為后面學(xué)生的進(jìn)一步發(fā)現(xiàn)學(xué)習(xí)提供了充分的心理準(zhǔn)備與知識準(zhǔn)備。

        2、小組合作,加深理解

        出示例2: 一輛汽車行駛的時(shí)間和路程如下表:

        時(shí)間(小時(shí))路程(千米)

        分組討論: 80

        …...…...160 240 320 400

       。1)表中有哪兩種相關(guān)聯(lián)的量?(表中有時(shí)間和路程兩種量,它們是相關(guān)聯(lián)的兩種量)

       。2)仔細(xì)觀察,路程是怎樣隨著時(shí)間的變化而變化的?(當(dāng)時(shí)間是1小時(shí),路程則是80千米,時(shí)間是2小時(shí),路程是160千米,時(shí)間變化,路程也隨著變化.時(shí)間增加,路程也隨著增加;

        一種量變化,另一種量也隨著變化.時(shí)間減少,路程也隨著減少.)

        (3)相對應(yīng)的路程和時(shí)間的比分別是多少?比值是多少?

        80|1=80 160|2=80 240|3=80 320|4=80

       。4)這個(gè)比值表示的是什么?如何用關(guān)系式來表示他們之間的關(guān)系? 生:這里的80表示一輛汽車的速度。也就是路程和時(shí)間的比值一定. 路程|時(shí)間=速度(一定)

        (設(shè)計(jì)意圖:因?yàn)槌烧壤腵量這個(gè)概念本來就比較難理解,學(xué)生在短短的一節(jié)課中很難一下子正確建模。因此,教學(xué)例1之后,應(yīng)根據(jù)教學(xué)需要和學(xué)生學(xué)習(xí)實(shí)際,我自主開發(fā)了一些新的教學(xué)內(nèi)容,對學(xué)生的課本學(xué)習(xí)形成補(bǔ)充和拓展。)

        3、歸納總結(jié)

        師:比較例

        1、例2,這兩個(gè)例子有什么共同點(diǎn)?學(xué)生匯報(bào)討論結(jié)果。匯報(bào)時(shí)教師引導(dǎo)學(xué)生比較上面兩種情況的相同點(diǎn)和不同點(diǎn)。同時(shí)教師根據(jù)學(xué)生的回答板書:(1)都有兩種相關(guān)聯(lián)的量

        (2)一種量變化,另一種量也隨著變化

        (3)相對應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定

        4.建立模型,抽象概括正比例的意義

       。1)師:具有這樣變化規(guī)律的兩個(gè)量到底是什么關(guān)系呢?請到數(shù)學(xué)書45頁去尋找答案吧!

        生:自學(xué)匯報(bào) 師:我們一起來看大屏幕(課件總結(jié))兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。兩種量中相對應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定。這兩種量就叫做成正比例的量,它們的關(guān)系就叫做正比例關(guān)系。

        板書課題:正比例

       。ㄔO(shè)計(jì)意圖:讓學(xué)生自學(xué)課本,一是為了培養(yǎng)學(xué)生的閱讀能力,和自學(xué)意識,第二是為讓學(xué)生加深對正比例的理解和認(rèn)識

       。2)判斷條件:

        根據(jù)成正比例的量的概念,誰來說說一說,要想知道兩種量是不是正比例關(guān)系,應(yīng)該抓住哪些關(guān)鍵點(diǎn)?

       。3)教學(xué)字母關(guān)系式

        師:如果用y和x表示兩種相關(guān)聯(lián)的變量,不變的量(即定量)用k表示,誰能用字母表示正比例關(guān)系?

        生:= k(一定)(3)全班交流:根據(jù)正比例的意義以及正比例關(guān)系的式子,想一想,成正比例的兩種量必須具備哪些條件?

       。4)小結(jié):兩種量要有關(guān)聯(lián)。

        一個(gè)量增加,另一個(gè)量隨著增加。一個(gè)量減少,另一個(gè)量隨著減少。兩種量的比值一定。(設(shè)計(jì)意圖:為使學(xué)生更好地理解、把握、運(yùn)用概念,概念歸納出來后,引導(dǎo)學(xué)生找準(zhǔn)把握概念的“關(guān)鍵詞”非常必要,而且十分有效。如提出“要判斷兩個(gè)量是不是成正比例的量,要具備哪幾個(gè)條件?”引導(dǎo)學(xué)生用言語、圖象、關(guān)系式等不同方式加以表征,以揭示概念的本質(zhì),加深對概念的理解。)

        5、引導(dǎo)舉例,強(qiáng)化認(rèn)識

        師:想一想,生活中還有哪些成正比例的量?

       。1)學(xué)生自由舉例。

        (2)預(yù)設(shè):因?yàn)殚L方形的面積÷長=長方形的寬,所以長方形的面積和長成正比例。師:日常生活和生產(chǎn)中有很多相關(guān)聯(lián)的量,有的成正比例,有的相關(guān)聯(lián),但不成比例。判斷兩種相關(guān)聯(lián)的量是否成正比例,要看這兩個(gè)量的比值是否一定,只有比值一定,這兩個(gè)量才成正

        比例。

        6、判斷下面的兩種量是否成正比例?并說明理由

       。1)長方形的寬一定,長和它的面積

        (2)《小學(xué)生作文》的單價(jià)一定,總價(jià)和訂閱的數(shù)量。

        (3)小新跳高的高度和他的身高。

       。4)小麥每公頃的產(chǎn)量一定,小麥的公頃數(shù)和總產(chǎn)量。

       。5)書的總頁數(shù)一定,已經(jīng)看的頁

       。ㄔO(shè)計(jì)意圖:這個(gè)環(huán)節(jié)設(shè)計(jì)的練習(xí)目的是讓學(xué)生在鞏固的基礎(chǔ)上,學(xué)會明辨是非,加深對正比例的認(rèn)識,同時(shí),也讓學(xué)生明確:“相關(guān)聯(lián)的兩個(gè)量也未必就是正比例,判斷兩種量是否成正比例,關(guān)鍵還要看它們的比值是否一定。)

       。ǘ┭芯空壤龍D像

        師:正比例關(guān)系不但能通過計(jì)算看比值是不是一定來判讀,還能用圖像來表示。

        出示例2:

        一輛汽車行駛的時(shí)間和路程如下表:

        時(shí)間(小時(shí))路程(千米)

        出示圖表 80

        …...…...160 240 320 400

        師:仔細(xì)觀察,從圖中能獲得哪些信息?

        生:

        學(xué)生嘗試畫圖。

        溫馨提示:

        (1)在圖中找到相對應(yīng)的點(diǎn)并畫出來。

       。2)仔細(xì)觀察畫出的點(diǎn),先猜一猜,再連一連,你有什么發(fā)現(xiàn)?

        3.學(xué)生展示畫圖,感知正比例圖像。

        猜測:我們經(jīng)過觀察發(fā)現(xiàn)這些點(diǎn)連起來好像是一條直線。師質(zhì)疑:是不是這樣呢?

        師:老師發(fā)現(xiàn)剛才有很多連線的時(shí)候都是從第一點(diǎn)開始連得,孩子們想一想,到底應(yīng)該從哪兒開始連?

        生:0點(diǎn)

        師:0點(diǎn)意思表示什么意呢?

        教師引導(dǎo)學(xué)生說出0點(diǎn)表示:0小時(shí)行駛了0千米的路程(汽車還沒有出發(fā)在原點(diǎn))。師:那就請同學(xué)們把圖像完善好。

        師 質(zhì)疑:A點(diǎn)表示什么意思?B點(diǎn)表示什么意思?

        生:

        4、師小結(jié):大家把所描的各點(diǎn)連起來都在一條直線上?闯稣壤膱D像就是一條從(0,0)出發(fā)的無線延伸的射線。我們可以利用這個(gè)發(fā)現(xiàn)判斷兩個(gè)量是否成正比例。大家剛才的發(fā)現(xiàn)和法國著名數(shù)學(xué)家笛卡兒的發(fā)明不謀而合,大家真了不起!

       。ㄕn件)數(shù)和形是數(shù)學(xué)的兩大根基,以前毫不相干,正是笛卡兒的發(fā)明,把“數(shù)”轉(zhuǎn)化為“形”的圖象,從此數(shù)學(xué)發(fā)展更蓬勃,令數(shù)有了幾何意義,是很多高等數(shù)學(xué)的思想。這是數(shù)學(xué)史上的偉大創(chuàng)舉!大家的發(fā)現(xiàn)和數(shù)學(xué)家想的一樣,好樣的。請同學(xué)們把掌聲送給最棒的自己。

       。ㄔO(shè)計(jì)意圖:這一環(huán)節(jié)向?qū)W生滲透數(shù)學(xué)文化,從而數(shù)形完美結(jié)合)

        5、引導(dǎo)學(xué)生利用正比例圖像解決問題。

        師:我們可以運(yùn)用正比例圖像解決生活中的一些問題。拋出問題:

       。1)根據(jù)圖像判斷,這輛汽車2.5小時(shí)行駛多少千米?

       。2)估計(jì)一下,行駛440千米需要多少小時(shí)? 引導(dǎo)學(xué)生:

       、傧胍幌,2.5小時(shí)大約在橫軸的什么位置,能否在正比例圖像上找到相對應(yīng)的點(diǎn)?這個(gè)點(diǎn)對應(yīng)縱軸上什么位置?

       、趧觿邮,利用三角板在圖上試著畫一畫、找一找、驗(yàn)證一下。

        ③動畫演示,將想象的點(diǎn)畫出來。師:你為什么找得這么快?有什么好辦法?

        生:臺前演示

        師:利用正比例關(guān)系圖像,不用計(jì)算,可以由一個(gè)量的值,直接找到對應(yīng)的另一個(gè)量的值。得出結(jié)論:

       。ㄔO(shè)計(jì)意圖:把研究的機(jī)會放給學(xué)生,充分發(fā)揮學(xué)生的主體地位。通過猜一猜、想一想、畫一畫等數(shù)學(xué)活動,提高學(xué)生解決問題的能力,并適時(shí)對學(xué)生進(jìn)行數(shù)學(xué)人文教育。)

        6、總結(jié)

        今天我們通過猜想驗(yàn)證和“畫一畫、說一說、估一估”等數(shù)學(xué)活動,初步感知了正比例圖像,并能在圖中根據(jù)一個(gè)變量的值估計(jì)它所對應(yīng)的變量的值。同學(xué)們真的非常了不起!

        四、回顧整理 反思提升

        1、通過這一節(jié)課的學(xué)習(xí),你有什么收獲?

        生:(2-3名學(xué)生回答)

        2、盤點(diǎn)學(xué)習(xí)過程

        千金難買回頭看,我們一起來回顧這節(jié)課的學(xué)習(xí)過程,首先我們研究了總價(jià)、本數(shù)這兩個(gè)相關(guān)聯(lián)的量之間的關(guān)系,接著又研究了路程、時(shí)間這兩個(gè)相關(guān)聯(lián)的量,借助這兩個(gè)具體的數(shù)量關(guān)系,由此歸納抽象出正比例模型。接著又研究了正比例圖像,從而實(shí)現(xiàn)了數(shù)與形的完美結(jié)合!在以后的學(xué)習(xí)中,我們也可以用這種方法去學(xué)習(xí)研究其他的知識。

        3、最后送一句話給大家,“學(xué)而不思則罔,思而不學(xué)則怠”。希望同學(xué)們在以后的學(xué)習(xí)中勤于反思,善于總結(jié),只有把學(xué)習(xí)和思考結(jié)合起來,才能有更大大多的發(fā)現(xiàn)!

       。ㄔO(shè)計(jì)意圖:俗話說:“授之以魚,不如授之以漁”本環(huán)節(jié)的設(shè)計(jì)既有知識的提升,更有學(xué)習(xí)方法的總結(jié)。)

      【正比例教學(xué)設(shè)計(jì)】相關(guān)文章:

      正比例教學(xué)設(shè)計(jì)09-18

      《正比例》教學(xué)設(shè)計(jì)10-07

      正比例的教學(xué)設(shè)計(jì)10-06

      《正比例》教學(xué)設(shè)計(jì)02-12

      《正比例》教學(xué)設(shè)計(jì)04-22

      正比例教學(xué)設(shè)計(jì)02-22

      正比例教學(xué)設(shè)計(jì)01-06

      正比例教學(xué)設(shè)計(jì)范文10-07

      有關(guān)《正比例》的教學(xué)設(shè)計(jì)10-07

      《正比例》教學(xué)設(shè)計(jì)范文10-07