三角函數(shù)教學(xué)設(shè)計(jì)
作為一名教學(xué)工作者,很有必要精心設(shè)計(jì)一份教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么寫教學(xué)設(shè)計(jì)需要注意哪些問題呢?以下是小編精心整理的三角函數(shù)教學(xué)設(shè)計(jì),僅供參考,大家一起來看看吧。
三角函數(shù)教學(xué)設(shè)計(jì)1
一、教材分析
這節(jié)課是在初中學(xué)習(xí)的銳角三角函數(shù)的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)任意角的三角函數(shù)。任意角的三角函數(shù)通常是借助直角坐標(biāo)系來定義的。三角函數(shù)的定義是本章教學(xué)內(nèi)容的基本概念和重要概念,也是學(xué)習(xí)后續(xù)內(nèi)容的基礎(chǔ),更是學(xué)好本章內(nèi)容的關(guān)鍵。因此,要重點(diǎn)地體會、理解和掌握三角函數(shù)的定義。
二、學(xué)生情況分析
本課時研究的是任意角的三角函數(shù),學(xué)生在初中階段曾研究過銳角三角函數(shù),其研究范圍是銳角;
其研究方法是幾何的,沒有坐標(biāo)系的參與;
其研究目的是為解直角三角形服務(wù)。以上三點(diǎn)都是與本課時不同的,因此在教學(xué)過程中要發(fā)展學(xué)生的已有認(rèn)知經(jīng)驗(yàn),發(fā)揮其正遷移。
三、教學(xué)目標(biāo)
知識與能力:借助單位圓理解意角的三角函數(shù)(正弦、余弦、正切)的定義。(能根據(jù)任意角的三角函數(shù)的定義求出具體的角的各三角函數(shù)值。)
過程與方法:在學(xué)習(xí)的過程中,培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的思路。
情感態(tài)度與價值觀:讓學(xué)生積極參與知識的形成過程,經(jīng)歷知識的“發(fā)現(xiàn)”過程,獲得發(fā)現(xiàn)的“經(jīng)驗(yàn)”。
四、教學(xué)重點(diǎn)、難點(diǎn)分析
重點(diǎn):理解任意角三角函數(shù)(正弦、余弦、正切)的定義。
難點(diǎn):通過坐標(biāo)求任意角的三角函數(shù)值。
五、教學(xué)方法與策略
教學(xué)過程中采用學(xué)生自主探索、動手實(shí)踐、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn),本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)。
六、教學(xué)過程
問題1:現(xiàn)在請你回憶初中學(xué)過的銳角三角函數(shù)的定義,并思考一個問題:如果將銳角置于平面直角坐標(biāo)系中,如何用直角坐標(biāo)系中角的終邊上的點(diǎn)的坐標(biāo)表示銳角三角函數(shù)呢?
設(shè)計(jì)意圖:將已有知識坐標(biāo)化,分化難點(diǎn)。用新的觀點(diǎn)再認(rèn)識學(xué)生的已有知識經(jīng)驗(yàn),發(fā)揮其正遷移作用,同時使本課時的學(xué)習(xí)與學(xué)生的已有知識經(jīng)驗(yàn)緊密聯(lián)系,使知識有一個熟悉的起點(diǎn),扎實(shí)的固著點(diǎn)。)
預(yù)計(jì)的回答:學(xué)生可以回憶出初中學(xué)過的銳角三角函數(shù)的定義,但是在用坐標(biāo)語言表述時可能會出現(xiàn)困難——即使將角置于坐標(biāo)系中但是仍然習(xí)慣用三角形邊的比值表示銳角三角函數(shù),需要教師引導(dǎo)學(xué)生將之轉(zhuǎn)換為用終邊上的點(diǎn)的坐標(biāo)表示銳角三角函數(shù)。
問題2:回憶弧度制中1弧度角的幾何解釋,它是借助于單位圓給出的,能否從中得到啟示將上述定義的形式化簡,化簡的依據(jù)是什么?寫出最簡單的形式。
設(shè)計(jì)意圖:引入單位圓。深化對單位圓作用的'認(rèn)識,用數(shù)學(xué)的簡潔美引導(dǎo)學(xué)生進(jìn)行研究,為定義的拓展奠定基礎(chǔ)。該問題與問題1結(jié)合,分步推進(jìn),降低難度,基本尊重教材的處理方式。
預(yù)計(jì)的困難:由于學(xué)生只接觸過一次單位圓,對它所能起的作用只有一般的了解,所以需要教師的引導(dǎo)。也可以引導(dǎo)學(xué)生從形式上對上述定義化簡,使得分母為1,之后通過分母的幾何意義將之與單位圓結(jié)合起來。
單位圓中定義銳角三角函數(shù):點(diǎn)P的坐標(biāo)為(x,y),那么銳角α的三角函數(shù)可以用坐標(biāo)表示為:
[sina=MPOP=y],[cosa=OMOP=x],[tana=MPOM=yx]。
問題3:大家現(xiàn)在能不能給出任意角的三角函數(shù)的定義。
設(shè)計(jì)意圖:引導(dǎo)學(xué)生在借助單位圓定義銳角三角函數(shù)的基礎(chǔ)上,進(jìn)一步給出任意角三角函數(shù)的定義。
有學(xué)生給出任意角三角函數(shù)的定義,教師進(jìn)行整理。
例1:(P12)例2:(P12)
學(xué)生練習(xí):P15練習(xí)1、2。
小結(jié):任意角的三角函數(shù)的定義。
作業(yè):P20 A組1、2。
三角函數(shù)教學(xué)設(shè)計(jì)2
一.教學(xué)目標(biāo)
1.知識與技能
(1)能夠借助三角函數(shù)的定義及單位圓中的三角函數(shù)線推導(dǎo)三角函數(shù)的誘導(dǎo)公式。
。2)能夠運(yùn)用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡、求值問題轉(zhuǎn)化為銳角三角函數(shù)的化簡、求值問題。
2.過程與方法
(1)經(jīng)歷由幾何直觀探討數(shù)量關(guān)系式的過程,培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)能力和概括能力。
。2)通過對誘導(dǎo)公式的探求和運(yùn)用,培養(yǎng)化歸能力,提高學(xué)生分析問題和解決問題的能力。
3.情感、態(tài)度、價值觀
。1)通過對誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度。
(2)在誘導(dǎo)公式的探求過程中,運(yùn)用合作學(xué)習(xí)的方式進(jìn)行,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神。
二.教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):探求π-a的誘導(dǎo)公式。π+a與-a的誘導(dǎo)公式在小結(jié)π-a的誘導(dǎo)公式發(fā)現(xiàn)過程的基礎(chǔ)上,教師引導(dǎo)學(xué)生推出。
教學(xué)難點(diǎn):π+a,-a與角a終邊位置的幾何關(guān)系,發(fā)現(xiàn)由終邊位置關(guān)系導(dǎo)致(與單位圓交點(diǎn))的坐標(biāo)關(guān)系,運(yùn)用任意角三角函數(shù)的定義導(dǎo)出誘導(dǎo)公式的“研究路線圖”。
三.教學(xué)方法與教學(xué)手段
問題教學(xué)法、合作學(xué)習(xí)法,結(jié)合多媒體課件
四.教學(xué)過程
角的概念已經(jīng)由銳角擴(kuò)充到了任意角,前面已經(jīng)學(xué)習(xí)過任意角的三角函數(shù),那么任意角的三角函數(shù)值怎么求呢?先看一個具體的問題。
(一)問題提出
如何將任意角三角函數(shù)求值問題轉(zhuǎn)化為0°~360°角三角函數(shù)求值問題。
【問題1】求390°角的正弦、余弦值. 一般地,由三角函數(shù)的定義可以知道,終邊相同的角的同一三角函數(shù)值相等,三角函數(shù)看重的就是終邊位置關(guān)系。即有:sin(a+k·360°) = sinα,
cos(a+k·360°) = cosα, (k∈Z) tan(a+k·360°) = tanα。
這組公式用弧度制可以表示成sin(a+2kπ) = sinα, cos(a+2kπ) = cosα, (k∈Z) (公式一) tan(a+2kπ) = tanα。
。ǘ﹪L試推導(dǎo)
如何利用對稱推導(dǎo)出角π-a與角a的三角函數(shù)之間的關(guān)系。
由上一組公式,我們知道,終邊相同的角的同一三角函數(shù)值一定相等。反過來呢?如果兩個角的三角函數(shù)值相等,它們的終邊一定相同嗎?比如說:
【問題2】你能找出和30°角正弦值相等,但終邊不同的角嗎?
角π-a與角a的終邊關(guān)于y軸對稱,有 sin(π-a) = sina,
cos(π-a) =-cosa,(公式二) tan(π-a) =-tana。
〖思考〗請大家回顧一下,剛才我們是如何獲得這組公式(公式二)的? 因?yàn)榕c角a終邊關(guān)于y軸對稱是角π-a,,利用這種對稱關(guān)系,得到它們的終邊與單位圓的交點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)。于是,我們就得到了角π-a與角a的三角函數(shù)值之間的關(guān)系:正弦值相等,余弦值互為相反數(shù),進(jìn)而,就得到我們研究三角函數(shù)誘導(dǎo)公式的路線圖:角間關(guān)系→對稱關(guān)系→坐標(biāo)關(guān)系→三角函數(shù)值間關(guān)系。
(三)自主探究
如何利用對稱推導(dǎo)出π+a,-a與a的三角函數(shù)值之間的關(guān)系。
剛才我們利用單位圓,得到了終邊關(guān)于y軸對稱的角π-a與角a的三角函數(shù)值之間的關(guān)系,下面我們還可以研究什么呢?
【問題3】兩個角的終邊關(guān)于x軸對稱,你有什么結(jié)論?兩個角的終邊關(guān)于原點(diǎn)對稱呢?
角-a與角a的.終邊關(guān)于x軸對稱,有: sin(-a) =-sina, cos(-a) = cosa,(公式三) tan(-a) =-tana。
角π+a與角a終邊關(guān)于原點(diǎn)O對稱,有: sin(π +a) =-sina,
cos(π +a) =-cosa,(公式四) tan(π +a) = tana。
上面的公式一~四都稱為三角函數(shù)的誘導(dǎo)公式。
(四)簡單應(yīng)用
例求下列各三角函數(shù)值:
(1) sinp;
(2) cos(-60°);
。3)tan(-855°)
。ㄎ澹┗仡櫡此
【問題4】回顧一下,我們是怎樣獲得誘導(dǎo)公式的?研究的過程中,你有哪些體會?
知識上,學(xué)會了四組誘導(dǎo)公式;思想方法層面:誘導(dǎo)公式體現(xiàn)了由未知轉(zhuǎn)化為已知的化歸思想;誘導(dǎo)公式所揭示的是終邊具有某種對稱關(guān)系的兩個角三角函數(shù)之間的關(guān)系。主要體現(xiàn)了化歸和數(shù)形結(jié)合的數(shù)學(xué)思想。具體可以表示如下:
。┓謱幼鳂I(yè)
1、閱讀課本,體會三角函數(shù)誘導(dǎo)公式推導(dǎo)過程中的思想方法;
2、必做題 課本23頁13 3、選做題
。1)你能由公式二、三、四中的任意兩組公式推導(dǎo)到另外一組公式嗎?
。2)角α和角β的終邊還有哪些特殊的位置關(guān)系,你能探究出它們的三角函數(shù)值之間的關(guān)系嗎?
三角函數(shù)教學(xué)設(shè)計(jì)3
【教材分析】
本節(jié)是北師大版高中必修四第三章2.1和2.2兩角和與差的正弦、余弦函數(shù)(書第116頁-118頁內(nèi)容),本節(jié)是在學(xué)生已經(jīng)學(xué)習(xí)了任意角的三角函數(shù)和平面向量知識的基礎(chǔ)上進(jìn)一步研究兩角和與差的三角函數(shù)與單角的三角函數(shù)關(guān)系,它既是三角函數(shù)和平面向量知識的延伸,又是后繼內(nèi)容兩角和與差的正切公式、二倍角公式、半角公式的知識基礎(chǔ),起著承上啟下的作用,對于三角函數(shù)式的化簡、求值和三角恒等式的證明等有著重要的支撐。本課時主要講授運(yùn)用平面向量的數(shù)量積推導(dǎo)兩角差的余弦公式以及兩角和與差的正、余弦公式的運(yùn)用。
【學(xué)情分析】
學(xué)生在本節(jié)之前已經(jīng)學(xué)習(xí)了三角函數(shù)和平面向量這兩章知識內(nèi)容,這為本節(jié)課的學(xué)習(xí)作了很多的知識鋪墊,學(xué)生也有了一定的數(shù)學(xué)推理能力和運(yùn)算能力。本節(jié)教學(xué)內(nèi)容需要學(xué)生已經(jīng)具有單位圓中的任意角的三角概念和平面向量的數(shù)量積的表示等方面的知識儲備,這將有利于進(jìn)一步促進(jìn)學(xué)生思維能力的發(fā)展和數(shù)學(xué)思想的形成。
【課程資源】
高中數(shù)學(xué)北師大版必修四教材;多媒體投影儀
【教學(xué)目標(biāo)】
1、掌握用向量方法推導(dǎo)兩角差的余弦公式,通過簡單運(yùn)用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ);
2、讓學(xué)生經(jīng)歷兩角差的余弦公式的探索、發(fā)現(xiàn)過程,培養(yǎng)學(xué)生的動手實(shí)踐、探索、研究能力.
3、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,實(shí)事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神.
【教學(xué)重點(diǎn)和難點(diǎn)】
教學(xué)重點(diǎn):兩角和與差的余弦公式的推導(dǎo)及運(yùn)用
教學(xué)難點(diǎn):向量法推導(dǎo)兩角差的余弦公式及公式的靈活運(yùn)用
(設(shè)計(jì)依據(jù):平面內(nèi)兩向量的數(shù)量積的兩種形式的應(yīng)用是本節(jié)課“兩角和與差的余弦公式推導(dǎo)”的主要依據(jù),在后繼知識中也有廣泛的應(yīng)用,所以是本節(jié)的一個重點(diǎn)。又由于“兩角和與差的余弦公式的推導(dǎo)和應(yīng)用”對后幾節(jié)內(nèi)容能否掌握具有決定意義,在三角變換、三角恒等式的證明、三角函數(shù)式的化簡求值等方面有著廣泛的應(yīng)用,因此也是本節(jié)的一個重點(diǎn)。由于其推導(dǎo)方法的特殊性和推導(dǎo)過程的復(fù)雜性,所以也是一個難點(diǎn)。)
【教學(xué)方法】
情景教學(xué)法;問題教學(xué)法;直觀教學(xué)法;啟發(fā)發(fā)現(xiàn)法。
【學(xué)法指導(dǎo)】、
1、注意任意角的終邊與單位圓交點(diǎn)坐標(biāo)、平面向量的坐標(biāo)的表示以及平面向量的數(shù)量積的'兩種表示形式的復(fù)習(xí)為兩角差的余弦的推導(dǎo)做必要的準(zhǔn)備,并讓學(xué)生體會感悟向量在解決數(shù)學(xué)問題中的工具作用(體現(xiàn)學(xué)習(xí)過程中循序漸進(jìn),溫故知新的認(rèn)知規(guī)律。);
2、突出誘導(dǎo)公式在三角函數(shù)名稱變換中的作用以及變角思想讓學(xué)生進(jìn)一步體會數(shù)學(xué)的化歸思想。
3、讓學(xué)生注意觀察、對比兩角和與差的余弦公式中正弦、余弦的順序;角的順序關(guān)系,培養(yǎng)學(xué)生的觀察能力,并通過觀察掌握公式的特點(diǎn)。
【教學(xué)過程】
教學(xué)流程為:創(chuàng)設(shè)情境----提出問題----探索嘗試----啟發(fā)引導(dǎo)----解決問題。
。ㄒ唬﹦(chuàng)設(shè)情境,揭示課題
問題1:同學(xué)們都知道,,試問是否與相等?大家可以猜想是不是等于呢?下面我們就一起探討兩角差的余弦公式
【設(shè)計(jì)意圖】通過問題情境,自然流暢地提出問題,揭示課題,引發(fā)學(xué)生思考。使學(xué)生目標(biāo)明確、迅速進(jìn)入新知學(xué)習(xí)。
(二)問題探究,新知構(gòu)建
問題2:你能用與的三角函數(shù)值表示出這兩個角的終邊與單位圓的交點(diǎn)A和B的坐標(biāo)嗎?怎樣表示?
【師生活動】畫單位圓在直角坐標(biāo)系中畫出單位圓并作出與角的終邊與單位圓的交點(diǎn),引導(dǎo)學(xué)生利用三角函數(shù)值表示出交點(diǎn)坐標(biāo)。
【設(shè)計(jì)意圖】通過復(fù)習(xí)使學(xué)生熟悉基礎(chǔ)知識、特別是用角的正、余弦表示特殊點(diǎn)的坐標(biāo),為新課的推進(jìn)做準(zhǔn)備。
問題3:如何計(jì)算向量的數(shù)量積?
【師生活動】引導(dǎo)學(xué)生觀察是的夾角,引發(fā)學(xué)生對向量的思考,并及時啟發(fā)學(xué)生復(fù)習(xí)向量的數(shù)量積的的兩種表示。
【設(shè)計(jì)意圖】平復(fù)習(xí)面內(nèi)兩向量的數(shù)量積的幾何法與代數(shù)法兩種表示,從而使“兩角差的余弦公式”的推證水到渠成。
問題4:計(jì)算cos15°和cos75°的值。
分析:本題關(guān)鍵是將分成45°與30°的和或者分解成45°與15°的差,再利用兩角差的余弦公式即可求解。(學(xué)生板演)
【師生活動】引導(dǎo)學(xué)生初步應(yīng)用公式
【設(shè)計(jì)意圖】讓學(xué)生熟練兩角和與差的余弦公式,體會學(xué)生公式的實(shí)際應(yīng)用價值,即:將非特殊角轉(zhuǎn)化為特殊角的和與差。并引發(fā)學(xué)生對兩角和的余弦公式的推證興趣。
問題7:同學(xué)們都知道誘導(dǎo)公式cos(-β)=cosβ,sin(-β)=-sinβ,那么你會推導(dǎo)出cos(α+β)=?
【師生活動】學(xué)生在老師的引導(dǎo)下自主推證兩角和的余弦公式。
【設(shè)計(jì)意圖】讓學(xué)生在學(xué)習(xí)中體會感受化歸思想和類比思想在新知識發(fā)現(xiàn)中的作用。
問題8:同學(xué)們已學(xué)過sinα=cos(-α),那么你會運(yùn)用這個公式推證出sin(α-β)和sin(α+β)嗎?
【師生活動】教師引導(dǎo)學(xué)生推導(dǎo)公式。
【設(shè)計(jì)意圖】新知構(gòu)建并體會轉(zhuǎn)化思想的應(yīng)用。
問題9:勾畫書中兩角和與差的三角函數(shù)公式并觀察它們有什么特點(diǎn)?
兩角和與差的余弦:
同名之積相加減,運(yùn)算符號左右反
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
兩角和與差的正弦:
異名之積相加減,運(yùn)算符號兩相同
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
【師生活動】學(xué)生總結(jié)公式特點(diǎn),學(xué)習(xí)小組交流,教師總結(jié)公式結(jié)構(gòu)特征。
【設(shè)計(jì)意圖】讓學(xué)生熟悉并掌握公式特征,如:教的順序、函數(shù)的順序、符號的規(guī)律。
(三)知識應(yīng)用,熟悉公式
例2、(1)求sin(-25π\12)的值;
(2)求cos75°cos105°+sin75°sin105°的值.
【設(shè)計(jì)意圖】進(jìn)一步熟悉誘導(dǎo)公式、兩角和與差的三角函數(shù)公式的特點(diǎn)及正逆應(yīng)用。
例3、已知求sin(α+β),cos(α-β)的值。
思維點(diǎn)撥:觀察公式本題已知條件應(yīng)先計(jì)算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函數(shù)的平方關(guān)系,并注意α,β的取值范圍來求解.
【設(shè)計(jì)意圖】訓(xùn)練學(xué)生思維的有序性,例如在面對問題時,要注意先認(rèn)真分析條件,明確使用公式時要有什么準(zhǔn)備,準(zhǔn)備工作怎么進(jìn)行等。還要重視思維過程的表述,不能只看最后結(jié)果而不顧過程表述的準(zhǔn)確性、簡潔性等。在教學(xué)過程中,對例3適當(dāng)延伸,目的要求學(xué)生正確使用分類討論的思想方法,在表述上也對學(xué)生有了更高的要求。
。ㄋ模┳灾魈骄浚罨斫,拓展思維
變式訓(xùn)練1:如何計(jì)算?
【反思】本節(jié)學(xué)習(xí)的兩角和與差的三角函數(shù)公式對任意角也成立嗎?
變式訓(xùn)練2:例3中如果去掉條件,對結(jié)果和求解過程會有什么影響?
變式訓(xùn)練3:下列等式成立嗎?
cos(α+β)=cosα+cosβ
cos(α-β)=cosα-cosβ
sin(α+β)=sinα+sinβ
sin(α-β)=sinα-sinβ
【設(shè)計(jì)意圖】通過變式訓(xùn)練與討論進(jìn)一步培養(yǎng)學(xué)生自主探究、合作學(xué)習(xí)交流的能力,以熟悉公式的變形運(yùn)用并掌握兩角和與差的正余弦公式的特征及應(yīng)用。
。ㄎ澹┬〗Y(jié)反思,評價反饋
1、本節(jié)學(xué)習(xí)的內(nèi)容有哪些?
2、兩角和與差的三角函數(shù)公式有什么特點(diǎn)?運(yùn)用兩角和與差的三角函數(shù)公式可以解決哪些問題?
3、你通過本節(jié)學(xué)習(xí)有哪些收獲?
【設(shè)計(jì)意圖】進(jìn)一步熟悉公式,加深學(xué)生對公式的理解和認(rèn)識,培養(yǎng)學(xué)生的歸納總結(jié)能力和交流表達(dá)能力,讓學(xué)生獲得成功體驗(yàn)。
(六)作業(yè)布置,練習(xí)鞏固
書面:課本第121頁A組1中間兩題;2(2)(3)(4)B組2(2)
課后研究:課本第118頁練習(xí)5;
【設(shè)計(jì)意圖】鞏固和理解知識,掌握兩角和與差的三角函數(shù)公式。并引發(fā)學(xué)生對新知學(xué)習(xí)與探求的欲望和興趣。
【板書設(shè)計(jì)】
兩角和與差的正、余弦函數(shù)
公式
推導(dǎo)
例1
例2
例3
【教后反思】
本節(jié)教學(xué)設(shè)計(jì)首先通過問題情景闡述了兩角差的余弦公式的產(chǎn)生背景,然后通過組織學(xué)生分析,討論,并借助于單位圓中以原點(diǎn)為起點(diǎn)的兩向量的數(shù)量積的兩種表示,對α大于β使,cos(α-β)給出證明,進(jìn)而用向量知識探究任意角的情形。這些均體現(xiàn)了數(shù)學(xué)中從特殊到一般的思想方法,符合新課改的基本理念。同時,例題1、2、3由淺入深,讓學(xué)生在問題中探究,在探究中建構(gòu)新知。使學(xué)生在已有基礎(chǔ)上,充分利用歸納、類比等方法激發(fā)學(xué)生進(jìn)一步探究的欲望,建立Cα±β模型,有利于學(xué)生數(shù)學(xué)思維水平的提高,同時及時鞏固,應(yīng)用,拓展延伸,加強(qiáng)了學(xué)生對新知的掌握和靈活運(yùn)用。給學(xué)生思維以適當(dāng)?shù)囊龑?dǎo)并不一定會降低學(xué)生思維的層次,反而能夠提高思維的有效性,從而體現(xiàn)教師主導(dǎo)作用和學(xué)生主體作用的和諧統(tǒng)一。但課后發(fā)現(xiàn)小結(jié)倉促,如果能再引導(dǎo)學(xué)生自我小結(jié)、反思?赡軙茫
【關(guān)于教學(xué)設(shè)計(jì)的思考】
1、本節(jié)課授課內(nèi)容為《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(4)》(北師大版)第三章第一節(jié),本節(jié)課的教學(xué)重點(diǎn)是:兩角和與差的余弦公式的推導(dǎo)和應(yīng)用是本節(jié)的又一個重點(diǎn),也是本節(jié)的一個難點(diǎn)。所以這節(jié)課效果的好壞,體現(xiàn)在對這兩點(diǎn)實(shí)現(xiàn)的程度上,因此,例題、練習(xí)、作業(yè)應(yīng)用繞這兩方面設(shè)計(jì)。而平面內(nèi)兩向量的數(shù)量積的兩種形式的應(yīng)用又是推導(dǎo)兩角差的余弦公式的關(guān)鍵;因此在復(fù)習(xí),平面內(nèi)兩向量的數(shù)量積的兩種形式是本節(jié)課必要的準(zhǔn)備。
2、本節(jié)課采用“創(chuàng)設(shè)情境----提出問題----探索嘗試----啟發(fā)引導(dǎo)----解決問題”的過程來實(shí)現(xiàn)教學(xué)目標(biāo)。有利于知識產(chǎn)生、發(fā)展、解決這一認(rèn)知過程的完整體現(xiàn)。在教學(xué)手段上使用多媒體技術(shù),有效增加課堂容量。在教學(xué)過程環(huán)節(jié),采用問題教學(xué),再逐步展開的方式,能夠充分調(diào)動學(xué)生的學(xué)習(xí)積極性,讓學(xué)生的探索具有明確的目的性,減少盲目性。在利用平面內(nèi)兩向量的數(shù)量積的幾何形式、代數(shù)形式建立等式,而得到兩角差的余弦公式后,利用代數(shù)思想推出兩角和的余弦公式,使學(xué)生進(jìn)一步體會數(shù)學(xué)思想的深刻性。通過對公式的對比,可以加深學(xué)生對公式特征的印象,同時體會公式的線形美與對稱美,給學(xué)生以美的陶冶。作業(yè)的布置中,突出了學(xué)生學(xué)習(xí)的個體差異現(xiàn)實(shí),使學(xué)有余力的學(xué)生產(chǎn)生挑戰(zhàn)的心理感受,也為下一節(jié)內(nèi)容的學(xué)習(xí)做準(zhǔn)備。
3、數(shù)學(xué)的學(xué)習(xí),主要是培養(yǎng)人的思維課程,強(qiáng)調(diào)思維構(gòu)造,以問題解決為主的課程,既注重人的智慧獲得,又注重人的情感發(fā)展,因而在教學(xué)中,應(yīng)注意“完整的人”的數(shù)學(xué)教育,不搞“以智力開發(fā)為主的教育”,使學(xué)生成為真正的人。因此在課堂教學(xué)中,教學(xué)設(shè)計(jì)應(yīng)從學(xué)生出發(fā),給學(xué)生更多的自由,讓他們真正參與,注重學(xué)習(xí)的過程,尤其重視以學(xué)生為主的數(shù)學(xué)活動,注重學(xué)生的自我完善,自我發(fā)展,不把學(xué)生當(dāng)成接受知識的容器,要教會學(xué)生學(xué)會學(xué)習(xí),尤其是有意義的接受學(xué)習(xí)和發(fā)現(xiàn)學(xué)習(xí),“授人以魚,不如授之以漁,授人以魚祗救一時之及,授人以漁則可解一生之需”。在數(shù)學(xué)教育中,注重培養(yǎng)學(xué)生的自信,自重,自尊,使他們充滿希望和成功,促進(jìn)其健康人格的形成。只有這樣,才能讓數(shù)學(xué)課更有生機(jī)和人性,才能學(xué)生真正成為學(xué)習(xí)的主人。
三角函數(shù)教學(xué)設(shè)計(jì)4
教學(xué)設(shè)計(jì)思路:新課程標(biāo)準(zhǔn)倡導(dǎo)積極主動、勇于探索的學(xué)習(xí)方式把學(xué)習(xí)的主動權(quán)還給學(xué)生。以此為宗旨,我采用自主學(xué)習(xí)、合作探究方法引導(dǎo)學(xué)生自主學(xué)習(xí)、探究學(xué)習(xí),努力做到教法、學(xué)法的最優(yōu)組合,并體現(xiàn)以下幾個特點(diǎn)
(1)蘇霍姆林斯基說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者”本節(jié)課正是抓住學(xué)生的這心理需求,充分利用互動工具,讓學(xué)生動手實(shí)踐、思考探索,合作交流真正意義上做到尊重學(xué)生的創(chuàng)造性,挖掘?qū)W生的潛力,讓他們對整個學(xué)習(xí)過程充滿激情,快樂學(xué)數(shù)學(xué)。
。2)注重信息反饋,堅(jiān)持師生間的多向交流。當(dāng)學(xué)生接觸新知一周期性、單調(diào)性、值域等性質(zhì)時以及利用性質(zhì)畫出圖象時,要引導(dǎo)學(xué)生多思多說、多練,要充分暴露他們所遇到的知識障礙,并在師生之間的多向交流中,不斷的'得到解決,伸知識深化。
本節(jié)課是在學(xué)生掌握了單位圓中的正弦函數(shù)線和誘導(dǎo)公式的基礎(chǔ)上進(jìn)行的,不僅是對前面所學(xué)知識應(yīng)用的考察,也是后續(xù)學(xué)習(xí)正余弦函數(shù)性質(zhì)的基礎(chǔ):對函數(shù)圖像清晰而誰確的掌握也為學(xué)生在解題實(shí)踐中提供了有力的工具,本小節(jié)內(nèi)容是三角函數(shù)的圖象與性質(zhì),是本章知識的重點(diǎn)。
有看求前啟后的作用美國華盛頓一所大學(xué)有句名言:“我聽見了,就忘記了我看見了,就記我做過了,就理解了”要想讓學(xué)生深刻理解三角函數(shù)性質(zhì)和圖像,就生主動去探素,大膽去實(shí)踐,親身體驗(yàn)知識的發(fā)生和發(fā)展過程學(xué)生情況分析:知識上,通過高一對函數(shù)的學(xué)習(xí),學(xué)生已經(jīng)具繪圖技能,能夠類比推理畫出圖像,并通過觀察圖像,總結(jié)性質(zhì),心具備了一定的分語言表達(dá)能力,初步形成了辯證的思想。
三角函數(shù)教學(xué)設(shè)計(jì)5
(一)概念及其解析
這一欄目的要點(diǎn)是:闡述概念的內(nèi)涵;在揭示內(nèi)涵的基礎(chǔ)上說明本課內(nèi)容的核心所在;必要時要對概念在中學(xué)數(shù)學(xué)中的地位進(jìn)行分析;明確概念所反映的數(shù)學(xué)思想方法。在此基礎(chǔ)上確定教學(xué)重點(diǎn)。
概念
描述周期現(xiàn)象的數(shù)學(xué)模型,最基本而重要的背景:勻速圓周運(yùn)動。
定義域:(弧度制下)任意角的集合;對應(yīng)法則:任意角α的終邊與單位圓的交點(diǎn)坐標(biāo)為(x,y),正弦函數(shù)為y=sinα,余弦函數(shù)為x=cosα;值域:[-1,1]。
概念解析
核心:對應(yīng)法則。
思想方法:函數(shù)思想--一般函數(shù)概念的指導(dǎo)作用;形與數(shù)結(jié)合--象限角概念基礎(chǔ)上;模型思想--單位圓上的點(diǎn)隨角的變化而變化的規(guī)律的數(shù)學(xué)刻畫。
重點(diǎn):理解任意角三角函數(shù)的對應(yīng)法則--需要一定時間。
(二)目標(biāo)和目標(biāo)解析
一堂課的教學(xué)目標(biāo)是教學(xué)目的的具體化,是教學(xué)活動每一階段所要實(shí)現(xiàn)的教學(xué)結(jié)果,是衡量教學(xué)質(zhì)量的標(biāo)準(zhǔn)。當(dāng)前,許多教師沒有意識到制定教學(xué)目標(biāo)的重要性,他們往往只從“課標(biāo)”或“教參”上抄錄,而且表述目標(biāo)時,“八股”現(xiàn)象嚴(yán)重。我們主張,課堂教學(xué)目標(biāo)不以“三維目標(biāo)”(知識與技能、過程與方法、情感態(tài)度價值觀)或“四維目標(biāo)”(知識技能、數(shù)學(xué)思考、解決問題、情感態(tài)度)分列,而以內(nèi)容及由內(nèi)容反映的思想方法為載體,將數(shù)學(xué)能力、情感態(tài)度等隱性目標(biāo)融于其中,并用了解、理解、掌握等及相應(yīng)的行為動詞經(jīng)歷、體驗(yàn)、探究等表述目標(biāo),特別要闡明經(jīng)過教學(xué),學(xué)生將有哪些變化,會做哪些以前不會做的事。
為了更加清晰地把握教學(xué)目標(biāo),以給課堂中教和學(xué)的行為做出準(zhǔn)確定向,需要對教學(xué)目標(biāo)中的關(guān)鍵詞進(jìn)行解析,即要解析了解、理解、掌握、經(jīng)歷、體驗(yàn)、探究等的具體含義,其中特別要明確當(dāng)前內(nèi)容所反映的數(shù)學(xué)思想方法的教學(xué)目標(biāo)。
教學(xué)目標(biāo):
理解任意角三角函數(shù)(正弦、余弦、正切)的定義。
目標(biāo)解析:
(1)知道三角函數(shù)研究的問題;
(2)經(jīng)歷“單位圓法”定義三角函數(shù)的過程;
(3)知道三角函數(shù)的對應(yīng)法則、自變量(定義域)、函數(shù)值(值域);
(4)體會定義三角函數(shù)過程中的數(shù)形結(jié)合、數(shù)學(xué)模型、化歸等思想方法.
(三)教學(xué)問題診斷分析
這一欄目的要點(diǎn)是:教師根據(jù)自己以往的教學(xué)經(jīng)驗(yàn),對學(xué)生認(rèn)知狀況的分析,以及數(shù)學(xué)知識內(nèi)在的邏輯關(guān)系,在思維發(fā)展理論的指導(dǎo)下,對本內(nèi)容在教與學(xué)中可能遇到的困難進(jìn)行預(yù)測,并對出現(xiàn)困難的原因進(jìn)行分析。在上述分析的基礎(chǔ)上指出教學(xué)難點(diǎn)。
教學(xué)問題診斷和教學(xué)難點(diǎn):
認(rèn)知基礎(chǔ)
(1)函數(shù)的知識--“理解三角函數(shù)定義”到底要理解什么?--三要素;
(2)銳角三角函數(shù)的定義--背景(直角三角形)、對應(yīng)關(guān)系(角度 比值)、解決的問題(解三角形)--側(cè)重幾何特性;
(3)任意角、弧度制、單位圓--在直角坐標(biāo)系下討論問題的經(jīng)驗(yàn),借助單位圓使問題簡化的經(jīng)驗(yàn)。
認(rèn)知分析
(1)三角函數(shù)是一類特殊函數(shù),“三角函數(shù)”是“函數(shù)”的下位概念,用“概念同化”方式學(xué)習(xí),要理解“三要素”的具體內(nèi)涵,其中核心是“對應(yīng)法則”;
(2)從銳角三角函數(shù)到任意角三角函數(shù),一種“形式推廣”,載體要從直角三角形過渡到直角坐標(biāo)系,其核心是要明確用坐標(biāo)定義三角函數(shù)的思想方法;
(3)體會將“任意點(diǎn)”化歸到“單位圓上的點(diǎn)”的意義--求簡的思想。
教學(xué)難點(diǎn)
(1)先要在弧度制下(用單位圓的半徑度量角)實(shí)現(xiàn)角的.集合與實(shí)數(shù)集的一一對應(yīng),再實(shí)現(xiàn)數(shù)到坐標(biāo)的對應(yīng),不是直接的對應(yīng),會造成理解困難;
(2)銳角三角函數(shù)的“比值”過渡到坐標(biāo)表示的比值,需要從函數(shù)角度重新認(rèn)識問題;
(3)求簡到“單位圓上點(diǎn)的坐標(biāo)”,思想方法深刻,學(xué)生不易理解。
(四)教學(xué)過程設(shè)計(jì)
在設(shè)計(jì)教學(xué)過程時,如下問題需要予以關(guān)注:
強(qiáng)調(diào)教學(xué)過程的內(nèi)在邏輯線索;
要給出學(xué)生思考和操作的具體描述;
要突出核心概念的思維建構(gòu)和技能操作過程,突出思想方法的領(lǐng)悟過程分析;
以“問題串”方式呈現(xiàn)為主,應(yīng)當(dāng)認(rèn)真思考每一問題的設(shè)計(jì)意圖、師生活動預(yù)設(shè),以及需要概括的概念要點(diǎn)、思想方法,需要進(jìn)行的技能訓(xùn)練,需要培養(yǎng)的能力,等。
另外,要根據(jù)內(nèi)容特點(diǎn)設(shè)計(jì)教學(xué)過程,如基于問題解決的設(shè)計(jì),講授式教學(xué)設(shè)計(jì),自主探究式教學(xué)設(shè)計(jì),合作交流式教學(xué)設(shè)計(jì),等。
教學(xué)過程設(shè)計(jì)
1.復(fù)習(xí)提問
請回答下列問題:
(1)前面學(xué)習(xí)了任意角,你能說說任意角概念與平面幾何中的角的概念有什么不同嗎?
(2)引進(jìn)象限角概念有什么好處?
(3)在度量角的大小時,弧度制與角度制有什么區(qū)別?
(4)我們是怎樣簡化弧度制的度量單位的?
(設(shè)計(jì)意圖:從為學(xué)習(xí)三角函數(shù)概念服務(wù)的角度復(fù)習(xí);關(guān)注的是思想方法。)
2.先行組織者
我們知道,函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型。例如指數(shù)函數(shù)描述了“指數(shù)爆炸”,對數(shù)函數(shù)描述了“對數(shù)增長”等。圓周運(yùn)動是一種重要的運(yùn)動,其中最基本的是一個質(zhì)點(diǎn)繞點(diǎn)O 做勻速圓周運(yùn)動,其變化規(guī)律該用什么函數(shù)模型描述呢?“任意角的三角函數(shù)”就是一個刻畫這種“周而復(fù)始”的變化規(guī)律的函數(shù)模型。
(設(shè)計(jì)意圖:解決“學(xué)習(xí)的必要性”問題,明確要研究的問題。)
3.概念教學(xué)過程
問題1 對于三角函數(shù)我們并不陌生,初中學(xué)過銳角三角函數(shù),你能說說它的自變量和對應(yīng)關(guān)系各是什么嗎?任意畫一個銳角 α,你能借助三角板,根據(jù)銳角三角函數(shù)的定義找出sinα的值嗎?
(設(shè)計(jì)意圖:從函數(shù)角度重新認(rèn)識銳角三角函數(shù)定義,突出“與點(diǎn)的位置無關(guān)”。)
問題2 你能借助象限角的概念,用直角坐標(biāo)系中點(diǎn)的坐標(biāo)表示銳角三角函數(shù)嗎?
(設(shè)計(jì)意圖:比值“坐標(biāo)化”。)
問題3 上述表達(dá)式比較復(fù)雜,你能設(shè)法將它化簡嗎?
(設(shè)計(jì)意圖:為“單位圓法”作鋪墊。學(xué)生答出“取點(diǎn)P(x,y)使x2+y2=1”后追問“為什么可以這樣做?)”
教師講授:類比上述做法,設(shè)任意角α的終邊與單位圓交點(diǎn)為P(x,y),定義正弦函數(shù)為y=sinα,余弦函數(shù)為x=cosα。
(設(shè)計(jì)意圖:“定義”是一種“規(guī)定”;把精力放在定義合理性的理解上。)
問題4 你能說明上述定義符合函數(shù)定義的要求嗎?
(設(shè)計(jì)意圖:讓學(xué)生用函數(shù)的三要素說明定義的合理性,以此進(jìn)一步明確三角函數(shù)的對應(yīng)法則、定義域和值域。)
例1 分別求自變量π/2,π,- π/3所對應(yīng)的正弦函數(shù)值和余弦函數(shù)值。
(設(shè)計(jì)意圖:讓學(xué)生熟悉定義,從中概括出用定義解題的步驟。)
例2 角α的終邊過P(1/2, - /2),求它的三角函數(shù)值。
4.概念的“精致”
通過概念的“精致”,引導(dǎo)學(xué)生認(rèn)識概念的細(xì)節(jié),并將新概念納入到概念系統(tǒng)中去,使學(xué)生全面理解三角函數(shù)概念。這里包括如下內(nèi)容:
三角函數(shù)值的符號問題;
終邊與坐標(biāo)軸重合時的三角函數(shù)值;
終邊相同的角的同名三角函數(shù)值;
與銳角三角函數(shù)的比較:因襲與擴(kuò)張;
從“形”的角度看三角函數(shù)--三角函數(shù)線,聯(lián)系的觀點(diǎn);
終邊上任意一點(diǎn)的坐標(biāo)表示的三角函數(shù);
還可以引導(dǎo)學(xué)生思考三角函數(shù)的“多元聯(lián)系表示”,例如,把實(shí)數(shù)軸想象為一條柔軟的細(xì)線,原點(diǎn)固定在單位點(diǎn)A(1,0),數(shù)軸的正半軸逆時針纏繞在單位圓上,負(fù)半軸順時針纏繞在單位圓上,那么數(shù)軸上的任意一個實(shí)數(shù)(點(diǎn))t 被纏繞到單位圓上的點(diǎn) P(cost,sint).
5.課堂小結(jié)
(1)問題的提出--自然、水到渠成,思想高度--函數(shù)模型;
(2)研究的思想方法--與銳角三角函數(shù)的因襲與擴(kuò)張的關(guān)系,化歸為最簡單也是最本質(zhì)的模型,數(shù)形結(jié)合;
(3)歸納概括概念的內(nèi)涵,明確自變量、對應(yīng)法則、因變量;
(4)用概念作判斷的步驟、注意事項(xiàng)等。
(五)目標(biāo)檢測設(shè)計(jì)
一般采用習(xí)題、練習(xí)的方式進(jìn)行檢測。要明確每一個(組)習(xí)題或練習(xí)的設(shè)計(jì)目的,加強(qiáng)檢測的針對性、有效性。練習(xí)應(yīng)當(dāng)由簡單到復(fù)雜、由單一到綜合,循序漸進(jìn)地進(jìn)行。當(dāng)前,要特別注意摒除“一步到位”的做法。過早給綜合題、難題有害無益,基礎(chǔ)不夠的題目更是貽害無窮。題目出不好、練習(xí)安排不合理是老師專業(yè)素養(yǎng)低的表現(xiàn)之一。
本課習(xí)題只要完成教科書上的相關(guān)題目即可,這里從略。
三角函數(shù)教學(xué)設(shè)計(jì)6
一、教材內(nèi)容及分析
《同角三角函數(shù)關(guān)系式》是人教版高中新教材必修4第一章第二節(jié)的第二課。本節(jié)內(nèi)容是同角三角函數(shù)關(guān)系式的運(yùn)用,三種題型“知值求值”“弦化切”“函數(shù)思想的應(yīng)用”。
二、學(xué)生情況分析
本課時研究的是同角三角函數(shù)關(guān)系式的運(yùn)用、逆用及變形,因此在教學(xué)過程中要發(fā)展學(xué)生的已有認(rèn)知,發(fā)揮知識遷移。
三、教學(xué)目標(biāo)
知識目標(biāo):
1掌握同角三角函數(shù)關(guān)系式的'運(yùn)用、逆用及變形;
2掌握同角三角函數(shù)關(guān)系式的三種題型。
能力目標(biāo):
滲透分類討論思想、方程思想。
情感、態(tài)度、價值觀目標(biāo):
發(fā)展學(xué)生研究問題、解決問題的能力。
四、教學(xué)重難點(diǎn)
重點(diǎn):
同角三角函數(shù)關(guān)系式的運(yùn)用、逆用及變形;
難點(diǎn):
1.正確判斷三角函數(shù)的符號
2.靈活運(yùn)用公式做運(yùn)算
五、教學(xué)方法與策略
教學(xué)中注意用新課程理念處理教材,采用學(xué)生自主探索、動手實(shí)踐、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn),本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)。
六、教學(xué)過程
引入(課件中:)
兩個公式
新課
例1 練習(xí)1(課件中)
意圖:加強(qiáng)學(xué)生對公式的理解,讓學(xué)生學(xué)會知值求值,能注意角的取值范圍,正確判斷函數(shù)值符號。
例2 練習(xí)1(課件中)
意圖:讓學(xué)生掌握齊次式分子分母同除余弦化正切。
例3 練習(xí)3(課件中)
意圖:讓學(xué)生理解掌握方程思想的應(yīng)用。
小結(jié)(課件中)
作業(yè)(課件中)
【三角函數(shù)教學(xué)設(shè)計(jì)】相關(guān)文章:
《三角函數(shù)的圖像和性質(zhì)》教學(xué)設(shè)計(jì)(通用10篇)07-07
銳角三角函數(shù)教學(xué)反思04-20
素描教學(xué)設(shè)計(jì)-教學(xué)設(shè)計(jì)07-09
《出塞》教學(xué)設(shè)計(jì)-教學(xué)設(shè)計(jì)07-06
[經(jīng)典]教學(xué)設(shè)計(jì)的設(shè)計(jì)07-17
教學(xué)設(shè)計(jì)的設(shè)計(jì)07-17
三角函數(shù)公式總結(jié)08-29