亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 數(shù)學高考知識點總結

      時間:2022-08-26 02:27:22 總結 投訴 投稿

      數(shù)學高考知識點總結(15篇)

        總結是對某一特定時間段內(nèi)的學習和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標更加明確,因此好好準備一份總結吧?偨Y怎么寫才能發(fā)揮它的作用呢?以下是小編收集整理的數(shù)學高考知識點總結,僅供參考,歡迎大家閱讀。

      數(shù)學高考知識點總結(15篇)

      數(shù)學高考知識點總結1

        圓與圓的位置關系的判斷方法

        一、設兩個圓的半徑為R和r,圓心距為d。

        則有以下五種關系:

        1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。

        2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。

        3、d=R—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的`半徑之差。

        4、d

        5、d

        二、圓和圓的位置關系,還可用有無公共點來判斷:

        1、無公共點,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。

        2、有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。

        3、有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

      數(shù)學高考知識點總結2

        第一部分集合

       。1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

        (2)注意:討論的時候不要遺忘了的情況。

        第二部分函數(shù)與導數(shù)

        1、映射:注意

       、俚谝粋集合中的元素必須有象;

        ②一對一,或多對一。

        2、函數(shù)值域的求法:

        ①分析法;

       、谂浞椒;

        ③判別式法;

       、芾煤瘮(shù)單調性;

       、輷Q元法;

       、蘩镁挡坏仁剑

       、呃脭(shù)形結合或幾何意義(斜率、距離、絕對值的意義等);

        ⑧利用函數(shù)有界性;

       、釋(shù)法

        3、復合函數(shù)的有關問題

       。1)復合函數(shù)定義域求法:

       、偃鬴(x)的定義域為〔a,b〕,則復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

       、谌鬴[g(x)]的`定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

        (2)復合函數(shù)單調性的判定:

       、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

       、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調性;

       、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調性。

        注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

        4、分段函數(shù):值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

        5、函數(shù)的奇偶性

        (1)函數(shù)的定義域關于原點對稱是函數(shù)具有奇偶性的必要條件;

       。2)是奇函數(shù);

        (3)是偶函數(shù);

       。4)奇函數(shù)在原點有定義,則;

       。5)在關于原點對稱的單調區(qū)間內(nèi):奇函數(shù)有相同的單調性,偶函數(shù)有相反的單調性;

       。6)若所給函數(shù)的解析式較為復雜,應先等價變形,再判斷其奇偶性;

      數(shù)學高考知識點總結3

        高考數(shù)學知識點:軌跡方程的求解

        符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.

        軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

        【軌跡方程】就是與幾何軌跡對應的代數(shù)描述。

        一、求動點的軌跡方程的基本步驟

       、苯⑦m當?shù)淖鴺讼,設出動點M的坐標;

       、矊懗鳇cM的集合;

        ⒊列出方程=0;

       、椿喎匠虨樽詈喰问;

        ⒌檢驗。

        二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

       、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

        ⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

       、诚嚓P點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

       、磪(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

        ⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

        .直譯法:求動點軌跡方程的一般步驟

       、俳ㄏ怠⑦m當?shù)淖鴺讼?

        ②設點——設軌跡上的任一點P(x,y);

        ③列式——列出動點p所滿足的關系式;

       、艽鷵Q——依條件的`特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

        ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

        高考數(shù)學知識點:排列組合公式

        排列組合公式/排列組合計算公式

        排列P------和順序有關

        組合C-------不牽涉到順序的問題

        排列分順序,組合不分

        例如把5本不同的書分給3個人,有幾種分法."排列"

        把5本書分給3個人,有幾種分法"組合"

        1.排列及計算公式

        從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號p(n,m)表示.

        p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).

        2.組合及計算公式

        從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號

        c(n,m)表示.

        c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);

        3.其他排列與組合公式

        從n個元素中取出r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.

        n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為

        n!/(n1!.n2!.....nk!).

        k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).

        排列(Pnm(n為下標,m為上標))

        Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n

        組合(Cnm(n為下標,m為上標))

        Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m

        20xx-07-0813:30

        公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如9!=9.8.7.6.5.4.3.2.1

        從N倒數(shù)r個,表達式應該為n.(n-1).(n-2)..(n-r+1);

        因為從n到(n-r+1)個數(shù)為n-(n-r+1)=r

        舉例:

        Q1:有從1到9共計9個號碼球,請問,可以組成多少個三位數(shù)?

        A1:123和213是兩個不同的排列數(shù)。即對排列順序有要求的,既屬于“排列P”計算范疇。

        上問題中,任何一個號碼只能用一次,顯然不會出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應該有9-1種可能,個位數(shù)則應該只有9-1-1種可能,最終共有9.8.7個三位數(shù)。計算公式=P(3,9)=9.8.7,(從9倒數(shù)3個的乘積)

        Q2:有從1到9共計9個號碼球,請問,如果三個一組,代表“三國聯(lián)盟”,可以組合成多少個“三國聯(lián)盟”?

        A2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬于“組合C”計算范疇。

        上問題中,將所有的包括排列數(shù)的個數(shù)去除掉屬于重復的個數(shù)即為最終組合數(shù)C(3,9)=9.8.7/3.2.1

        排列、組合的概念和公式典型例題分析

        例1設有3名學生和4個課外小組.(1)每名學生都只參加一個課外小組;(2)每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加.各有多少種不同方法?

        解(1)由于每名學生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數(shù),因此共有種不同方法.

        (2)由于每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加,因此共有種不同方法.

        點評由于要讓3名學生逐個選擇課外小組,故兩問都用乘法原理進行計算.

        例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?

        解依題意,符合要求的排法可分為第一個排、、中的某一個,共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:

        ∴符合題意的不同排法共有9種.

        點評按照分“類”的思路,本題應用了加法原理.為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數(shù)問題的一種數(shù)學模型.

        例3判斷下列問題是排列問題還是組合問題?并計算出結果.

        (1)高三年級學生會有11人:①每兩人互通一封信,共通了多少封信?②每兩人互握了一次手,共握了多少次手?

        (2)高二年級數(shù)學課外小組共10人:①從中選一名正組長和一名副組長,共有多少種不同的選法?②從中選2名參加省數(shù)學競賽,有多少種不同的選法?

        (3)有2,3,5,7,11,13,17,19八個質數(shù):①從中任取兩個數(shù)求它們的商可以有多少種不同的商?②從中任取兩個求它的積,可以得到多少個不同的積?

        (4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?

        分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關,所以是組合問題.其他類似分析.

        (1)①是排列問題,共用了封信;②是組合問題,共需握手(次).

        (2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法.

        (3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積.

        (4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法.

        例4證明.

        證明左式

        右式.

        ∴等式成立.

        點評這是一個排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質,可使變形過程得以簡化.

        例5化簡.

        解法一原式

        解法二原式

        點評解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質;解法二選用了組合數(shù)的兩個性質,都使變形過程得以簡化.

        例6解方程:(1);(2).

        解(1)原方程

        解得.

        (2)原方程可變?yōu)?/p>

        ∵,,

        ∴原方程可化為.

        即,解得

        高三數(shù)學三角函數(shù)公式

        銳角三角函數(shù)公式

        sin α=∠α的對邊 / 斜邊

        cos α=∠α的鄰邊 / 斜邊

        tan α=∠α的對邊 / ∠α的鄰邊

        cot α=∠α的鄰邊 / ∠α的對邊

        倍角公式

        Sin2A=2SinA?CosA

        Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

        tan2A=(2tanA)/(1-tanA^2)

        (注:SinA^2 是sinA的平方 sin2(A) )

        三倍角公式

        sin3α=4sinα·sin(π/3+α)sin(π/3-α)

        cos3α=4cosα·cos(π/3+α)cos(π/3-α)

        tan3a = tan a · tan(π/3+a)· tan(π/3-a)

        三倍角公式推導

        sin3a

        =sin(2a+a)

        =sin2acosa+cos2asina

        輔助角公式

        Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

        sint=B/(A^2+B^2)^(1/2)

        cost=A/(A^2+B^2)^(1/2)

        tant=B/A

        Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

        降冪公式

        sin^2(α)=(1-cos(2α))/2=versin(2α)/2

        cos^2(α)=(1+cos(2α))/2=covers(2α)/2

        tan^2(α)=(1-cos(2α))/(1+cos(2α))

        推導公式

        tanα+cotα=2/sin2α

        tanα-cotα=-2cot2α

        1+cos2α=2cos^2α

        1-cos2α=2sin^2α

        1+sinα=(sinα/2+cosα/2)^2

        =2sina(1-sin2a)+(1-2sin2a)sina

        =3sina-4sin3a

        cos3a

        =cos(2a+a)

        =cos2acosa-sin2asina

        =(2cos2a-1)cosa-2(1-sin2a)cosa

        =4cos3a-3cosa

        sin3a=3sina-4sin3a

        =4sina(3/4-sin2a)

        =4sina[(√3/2)2-sin2a]

        =4sina(sin260°-sin2a)

        =4sina(sin60°+sina)(sin60°-sina)

        =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

        =4sinasin(60°+a)sin(60°-a)

        cos3a=4cos3a-3cosa

        =4cosa(cos2a-3/4)

        =4cosa[cos2a-(√3/2)2]

        =4cosa(cos2a-cos230°)

        =4cosa(cosa+cos30°)(cosa-cos30°)

        =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

        =-4cosasin(a+30°)sin(a-30°)

        =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

        =-4cosacos(60°-a)[-cos(60°+a)]

        =4cosacos(60°-a)cos(60°+a)

        上述兩式相比可得

        tan3a=tanatan(60°-a)tan(60°+a)

        半角公式

        tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

        cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

        sin^2(a/2)=(1-cos(a))/2

        cos^2(a/2)=(1+cos(a))/2

        tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

        三角和

        sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

        cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

        tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

        兩角和差

        cos(α+β)=cosα·cosβ-sinα·sinβ

        cos(α-β)=cosα·cosβ+sinα·sinβ

        sin(α±β)=sinα·cosβ±cosα·sinβ

        tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

        tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

        和差化積

        sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

        sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

        cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

        cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

        tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

        tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

      數(shù)學高考知識點總結4

        一個推導

        利用錯位相減法推導等比數(shù)列的前n項和:

        Sn=a1+a1q+a1q2+…+a1qn-1,

        同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

        兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

        兩個防范

        (1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

        (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

        三種方法

        等比數(shù)列的判斷方法有:

        (1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N.),則{an}是等比數(shù)列.

        (2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N.),則數(shù)列{an}是等比數(shù)列.

        (3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的'常數(shù),n∈N.),則{an}是等比數(shù)列.

        注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.

      數(shù)學高考知識點總結5

        掌握每一個公式定理

        做課本的例題,課本的例題的思路比較簡單,其知識點也是單一不會交叉的,如果課本上的例題你拿出來都會做了,說明你已經(jīng)具備了一定的理解力。

        做課后練習題,前面的題是和課本例題一個級別的,如果課本上所有的題都會做了,那么基礎夯實可以告一段落。

        進行專題訓練提高數(shù)學成績

        1、做高中數(shù)學題的時候千萬不能怕難題!有很多人數(shù)學分數(shù)提不動,很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導數(shù),看到稍微長一點的復雜一點的敘述,甚至看到21、22就已經(jīng)開始退卻了。這部分的分數(shù),如果你不去努力,永遠都不會掙到的,所以第一個建議,就是大膽的去做。前面虧欠數(shù)學這門學科太多,就算讓它打腫了又怎樣,后面一點一點的強大起來,總有那么一天你去打它的臉。

        2、錯題本怎么用。和記筆記一樣,整理錯題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節(jié)課根本沒聽,真正有效率的人,是會把知識簡化,把書本讀薄的。先學學你能思考到答案的'哪一步,學著去偷分。當然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。

        3、如何學好高中數(shù)學

        1)先看筆記后做作業(yè)。有的高中學生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內(nèi)容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關內(nèi)容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區(qū)別。尤其練習題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

        2)做題之后加強反思。學生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思?偨Y一下自己的收獲。要總結出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構建起一個內(nèi)容與方法的科學的網(wǎng)絡系統(tǒng)。

        3)主動復習總結提高。進行章節(jié)總結是非常重要的。初中時是教師替學生做總結,做得細致,深刻,完整。高中是自己給自己做總結,老師不但不給做,而且是講到哪,考到哪,不留復習時間,也沒有明確指出做總結的時間。

      數(shù)學高考知識點總結6

        三角函數(shù)。

        注意歸一公式、誘導公式的正確性。

        數(shù)列題。

        1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;

        2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;

        3、證明不等式時,有時構造函數(shù),利用函數(shù)單調性很簡單

        立體幾何題。

        1、證明線面位置關系,一般不需要去建系,更簡單;

        2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

        3、注意向量所成的角的余弦值(范圍)與所求角的'余弦值(范圍)的關系。

        概率問題。

        1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);

        2、搞清是什么概率模型,套用哪個公式;

        3、記準均值、方差、標準差公式;

        4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);

        5、注意計數(shù)時利用列舉、樹圖等基本方法;

        6、注意放回抽樣,不放回抽樣;

        正弦、余弦典型例題。

        1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

        2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

        3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

        4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

        5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

        正弦、余弦解題訣竅。

        1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

        2、已知三邊,或兩邊及其夾角用余弦定理

        3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

      數(shù)學高考知識點總結7

        求函數(shù)奇偶性的常見錯誤

        錯因分析:求函數(shù)奇偶性的常見錯誤有求錯函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷,在用定義進行判斷時要注意自變量在定義域區(qū)間內(nèi)的任意性。

        抽象函數(shù)中推理不嚴密致誤

        錯因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設計出來的,在解決問題時,可以通過類比這類函數(shù)中一些具體函數(shù)的性質去解決抽象函數(shù)的性質。解答抽象函數(shù)問題要注意特殊賦值法的應用,通過特殊賦值可以找到函數(shù)的不變性質,這個不變性質往往是進一步解決問題的突破口。抽象函數(shù)性質的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴謹性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。

        函數(shù)零點定理使用不當致誤

        錯因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也是方程f(c)=0的根,這個結論我們一般稱之為函數(shù)的零點定理。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”,函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點時要注意這個問題。

        混淆兩類切線致誤

        錯因分析:曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。

        混淆導數(shù)與單調性的關系致誤

        錯因分析:對于一個函數(shù)在某個區(qū)間上是增函數(shù),如果認為函數(shù)的導函數(shù)在此區(qū)間上恒大于0,就會出錯。研究函數(shù)的單調性與其導函數(shù)的關系時一定要注意:一個函數(shù)的導函數(shù)在某個區(qū)間上單調遞增(減)的充要條件是這個函數(shù)的導函數(shù)在此區(qū)間上恒大(小)于等于0,且導函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

        導數(shù)與極值關系不清致誤

        錯因分析:在使用導數(shù)求函數(shù)極值時,很容易出現(xiàn)的錯誤就是求出使導函數(shù)等于0的點,而沒有對這些點左右兩側導函數(shù)的符號進行判斷,誤以為使導函數(shù)等于0的點就是函數(shù)的極值點。出現(xiàn)這些錯誤的原因是對導數(shù)與極值關系不清。可導函數(shù)在一個點處的導函數(shù)值為零只是這個函數(shù)在此點處取到極值的必要條件,在此提醒廣大考生在使用導數(shù)求函數(shù)極值時一定要注意對極值點進行檢驗。

        用錯基本公式致誤

        錯因分析:等差數(shù)列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項為a1、公比為q,則其通項公式an=a1pn-1,當公比q≠1時,前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當公比q=1時,前n項和公式Sn=na1。在數(shù)列的基礎性試題中,等差數(shù)列、等比數(shù)列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。

        an,Sn關系不清致誤

        錯因分析:在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在關系:這個關系是對任意數(shù)列都成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。當題目中給出了數(shù)列{an}的an與Sn之間的關系時,這兩者之間可以進行相互轉換,知道了an的具體表達式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時要注意體會這種轉換的相互性。

        對等差、等比數(shù)列的性質理解錯誤

        錯因分析:等差數(shù)列的前n項和在公差不為0時是關于n的常數(shù)項為0的二次函數(shù)。一般地,有結論“若數(shù)列{an}的前N項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。解決這類題目的一個基本出發(fā)點就是考慮問題要全面,把各種可能性都考慮進去,認為正確的命題給以證明,認為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時是一個很特殊的情況,在解決有關問題時要注意這個特殊情況。

        遺忘空集致誤

        錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導致解題結果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況。空集是一個特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導致解題錯誤或是解題不全面。

        忽視集合元素的三性致誤

        錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。

        四種命題的結構不明致誤

        錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結構以及它們之間的等價關系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數(shù)”的否定應該是“a,b不都是偶數(shù)”,而不應該是“a ,b都是奇數(shù)”。

        充分必要條件顛倒致誤

        錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的`充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準確的判斷。

        回憶一下初中學過的“等價于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價于B,記作A<=>B。“充要條件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題A等價于命題B,那么我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。

       。3)定義與充要條件

        數(shù)學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

        顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

        “充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”!皟H當”表示“必要”。

       。4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。

        高考數(shù)學集合復習知識點

        1、集合的概念

        集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的`對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

        集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

        2、元素與集合的關系元素與集合的關系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

        3、集合中元素的特性

       。1)確定性:設A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

       。2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

       。3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。

        4、集合的分類

        集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

        有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

        無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

        特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。

        5、特定的集合的表示

        為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

       。1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。

       。2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N;騈+。

       。3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

       。4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

       。5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

        不等式的解集:

       、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

        ②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

       、矍蟛坏仁浇饧倪^程叫做解不等式。

        不等式的判定:

        ①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

       、谠诓坏仁健癮>b”或“a

       、鄄坏忍柕拈_口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;

       、茉诹胁坏仁綍r,一定要注意不等式關系的關鍵字,如:正數(shù)、非負數(shù)、不大于、小于等等。

      數(shù)學高考知識點總結13

        基本事件的定義:

        一次試驗連同其中可能出現(xiàn)的每一個結果稱為一個基本事件。

        等可能基本事件:

        若在一次試驗中,每個基本事件發(fā)生的可能性都相同,則稱這些基本事件為等可能基本事件。

        古典概型:

        如果一個隨機試驗滿足:(1)試驗中所有可能出現(xiàn)的基本事件只有有限個;

        (2)每個基本事件的發(fā)生都是等可能的;

        那么,我們稱這個隨機試驗的概率模型為古典概型.

        古典概型的概率:

        如果一次試驗的等可能事件有n個,考試技巧,那么,每個等可能基本事件發(fā)生的概率都是;如果某個事件A包含了其中m個等可能基本事件,那么事件A發(fā)生的概率為。

        古典概型解題步驟:

        (1)閱讀題目,搜集信息;

        (2)判斷是否是等可能事件,并用字母表示事件;

        (3)求出基本事件總數(shù)n和事件A所包含的.結果數(shù)m;

        (4)用公式求出概率并下結論。

        求古典概型的概率的關鍵:

        求古典概型的概率的關鍵是如何確定基本事件總數(shù)及事件A包含的基本事件的個數(shù)。

      數(shù)學高考知識點總結14

        人教版高考數(shù)學復習知識點

        1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。

        2.判定兩個平面平行的方法:

        (1)根據(jù)定義--證明兩平面沒有公共點;

        (2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

        (3)證明兩平面同垂直于一條直線。

        3.兩個平面平行的主要性質:

        (1)由定義知:“兩平行平面沒有公共點”;

        (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;

        (3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

        (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

        (5)夾在兩個平行平面間的平行線段相等;

        (6)經(jīng)過平面外一點只有一個平面和已知平面平行。

        高考高三數(shù)學復習知識點

        1、三類角的求法:

       、僬页龌蜃鞒鲇嘘P的角。

        ②證明其符合定義,并指出所求作的角。

       、塾嬎愦笮(解直角三角形,或用余弦定理)。

        2、正棱柱——底面為正多邊形的直棱柱

        正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

        正棱錐的計算集中在四個直角三角形中:

        3、怎樣判斷直線l與圓C的位置關系?

        圓心到直線的距離與圓的半徑比較。

        直線與圓相交時,注意利用圓的“垂徑定理”。

        4、對線性規(guī)劃問題:作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。

        不看后悔!清華名師揭秘學好高中數(shù)學的方法

        培養(yǎng)興趣是關鍵。學生對數(shù)學產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

        (1)欣賞數(shù)學的美感

        比如幾何圖形中的對稱、變換前后的不變量、概念的嚴謹、邏輯的嚴密……

        通過對旋轉變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的.距離)的點的集合。

        (2)注意到數(shù)學在實際生活中的應用。

        例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解.

        學好數(shù)學,是現(xiàn)代公民的基本素養(yǎng)之一啊.

        人教版高考年級數(shù)學知識點

        1、直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        2、直線的斜率

       、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

       、谶^兩點的直線的斜率公式:

        注意下面四點:

        (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無關;

        (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

        (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

        云南高考數(shù)學知識點總結

      數(shù)學高考知識點總結15

        高考數(shù)學重要知識點整理

        一、求動點的軌跡方程的基本步驟

       、苯⑦m當?shù)淖鴺讼,設出動點M的坐標;

       、矊懗鳇cM的集合;

        ⒊列出方程=0;

       、椿喎匠虨樽詈喰问;

       、禉z驗。

        二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

       、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

       、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

       、诚嚓P點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

       、磪(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

        ⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

        6.直譯法:求動點軌跡方程的一般步驟

        ①建系——建立適當?shù)淖鴺讼?

       、谠O點——設軌跡上的任一點P(x,y);

       、哿惺健谐鰟狱cp所滿足的關系式;

       、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

        ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

        人教版高三年級高考數(shù)學必考知識點

       、僬忮F各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

       、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內(nèi)的射影也組成一個直角三角形.

        ⑶特殊棱錐的頂點在底面的射影位置:

       、倮忮F的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心.

       、诶忮F的'側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.

        ③棱錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

        ④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

        ⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.

       、奕忮F的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.

       、呙總四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

       、嗝總四面體都有內(nèi)切球,球心

        是四面體各個二面角的平分面的交點,到各面的距離等于半徑.

        [注]:

        i.各個側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側面的等腰三角形不知是否全等)

        ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

        簡證:AB⊥CD,AC⊥BD

        BC⊥AD.令得,已知則.

        iii.空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形.

        iv.若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形.

        簡證:取AC中點,則平面90°易知EFGH為平行四邊形

        EFGH為長方形.若對角線等,則為正方形.

        高三數(shù)學高考復習知識點

        數(shù)列是高中數(shù)學的重要內(nèi)容,又是學習高等數(shù)學的基礎。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學歸納法綜合在一起。

        探索性問題是高考的熱點,常在數(shù)列解答題中出現(xiàn)。本章中還蘊含著豐富的數(shù)學思想,在主觀題中著重考查函數(shù)與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學方法。

        近幾年來,高考關于數(shù)列方面的命題主要有以下三個方面;

        (1)數(shù)列本身的有關知識,其中有等差數(shù)列與等比數(shù)列的概念、性質、通項公式及求和公式。

        (2)數(shù)列與其它知識的結合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結合。

        (3)數(shù)列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。

        1.在掌握等差數(shù)列、等比數(shù)列的定義、性質、通項公式、前n項和公式的基礎上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學思想方法在解題實踐中的指導作用,靈活地運用數(shù)列知識和方法解決數(shù)學和實際生活中的有關問題;

        2.在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數(shù)學思想方法的認識,溝通各類知識的聯(lián)系,形成更完整的知識網(wǎng)絡,提高分析問題和解決問題的能力,

        進一步培養(yǎng)學生閱讀理解和創(chuàng)新能力,綜合運用數(shù)學思想方法分析問題與解決問題的能力。

      【數(shù)學高考知識點總結】相關文章:

      數(shù)學高考知識點總結02-22

      高考數(shù)學必考知識點總結02-11

      數(shù)學高考必考知識點總結11-12

      高考數(shù)學知識點總結10-03

      高考數(shù)學知識點總結【精】02-17

      【推薦】高考數(shù)學知識點總結02-17

      高考數(shù)學知識點總結【推薦】02-17

      【精】高考數(shù)學知識點總結02-17

      高考數(shù)學知識點總結【熱門】02-17

      數(shù)學高考知識點總結15篇02-22