亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高考數(shù)學(xué)知識點總結(jié)

      時間:2022-08-23 02:42:31 總結(jié) 投訴 投稿

      高考數(shù)學(xué)知識點總結(jié)【熱門】

        總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它可以促使我們思考,不妨讓我們認(rèn)真地完成總結(jié)吧。如何把總結(jié)做到重點突出呢?以下是小編為大家整理的高考數(shù)學(xué)知識點總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。

      高考數(shù)學(xué)知識點總結(jié)【熱門】

      高考數(shù)學(xué)知識點總結(jié)1

        1.數(shù)列的定義

        按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

        (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

        (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

        (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.

        (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的`數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

        2.數(shù)列的分類

        (1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

        (2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

        3.數(shù)列的通項公式

        數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

        這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4。

      高考數(shù)學(xué)知識點總結(jié)2

        三角函數(shù)。

        注意歸一公式、誘導(dǎo)公式的正確性。

        數(shù)列題。

        1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;

        2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;

        3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

        立體幾何題。

        1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

        2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

        3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的`關(guān)系。

        概率問題。

        1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);

        2、搞清是什么概率模型,套用哪個公式;

        3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

        4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);

        5、注意計數(shù)時利用列舉、樹圖等基本方法;

        6、注意放回抽樣,不放回抽樣;

        正弦、余弦典型例題。

        1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

        2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

        3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

        4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

        5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

        正弦、余弦解題訣竅。

        1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

        2、已知三邊,或兩邊及其夾角用余弦定理

        3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

      高考數(shù)學(xué)知識點總結(jié)3

        一、集合與函數(shù)

        1.進(jìn)行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。

        2.在應(yīng)用條件時,易A忽略是空集的情況

        3.你會用補集的思想解決有關(guān)問題嗎?

        4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

        5.你知道“否命題”與“命題的否定形式”的區(qū)別。

        6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。

        7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱。

        8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域。

        9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。

        10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法

        11. 求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。

        12.求函數(shù)的值域必須先求函數(shù)的定義域。

        13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

        14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?

        (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

        15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

        16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。

        17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?

        二、不等式

        1.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.

        2.絕對值不等式的解法及其幾何意義是什么?

        3.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

        4.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

        5. 在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。

        6. 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a

        三、數(shù)列

        1.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進(jìn)行討論了嗎?

        2.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。

        3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?

        4.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

        5.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。

        四、三角函數(shù)

        1.正角、負(fù)角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的.角和相等的角的區(qū)別嗎?

        2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

        3. 在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

        4. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)

        5. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是

        6.你還記得某些特殊角的三角函數(shù)值嗎?

        7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

        五、平面向量

        1..數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

        2..數(shù)量積與兩個實數(shù)乘積的區(qū)別:

        在實數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。

        已知實數(shù),且,則a=c,但在向量的數(shù)量積中沒有。

        在實數(shù)中有,但是在向量的數(shù)量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量。

        3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

        六、解析幾何

        1.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?

        2.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。

        3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

        4. 定比分點的坐標(biāo)公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?

        5. 對不重合的兩條直線

        (建議在解題時,討論后利用斜率和截距)

        6. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時,直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。

        7.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達(dá)。(①設(shè)出變量,寫出目標(biāo)函數(shù)②寫出線性約束條件③畫出可行域④作出目標(biāo)函數(shù)對應(yīng)的系列平行線,找到并求出最優(yōu)解⑦應(yīng)用題一定要有答。)

        8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?

        9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?

        10.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?

        11. 通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結(jié)論?)

        12. 在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項的系數(shù)是否為零?橢圓,雙曲線二次項系數(shù)為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進(jìn)行).

        13.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?

        七、立體幾何

        1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

        2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

        3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見

        4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。

        5.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

        6.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應(yīng)用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。

        7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?

        8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">

        直線與平面所成的角的范圍:0o≤α≤90°

      高考數(shù)學(xué)知識點總結(jié)4

        掌握每一個公式定理

        做課本的例題,課本的例題的思路比較簡單,其知識點也是單一不會交叉的,如果課本上的例題你拿出來都會做了,說明你已經(jīng)具備了一定的理解力。

        做課后練習(xí)題,前面的題是和課本例題一個級別的,如果課本上所有的題都會做了,那么基礎(chǔ)夯實可以告一段落。

        進(jìn)行專題訓(xùn)練提高數(shù)學(xué)成績

        1、做高中數(shù)學(xué)題的時候千萬不能怕難題!有很多人數(shù)學(xué)分?jǐn)?shù)提不動,很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導(dǎo)數(shù),看到稍微長一點的復(fù)雜一點的敘述,甚至看到21、22就已經(jīng)開始退卻了。這部分的分?jǐn)?shù),如果你不去努力,永遠(yuǎn)都不會掙到的,所以第一個建議,就是大膽的去做。前面虧欠數(shù)學(xué)這門學(xué)科太多,就算讓它打腫了又怎樣,后面一點一點的強大起來,總有那么一天你去打它的臉。

        2、錯題本怎么用。和記筆記一樣,整理錯題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節(jié)課根本沒聽,真正有效率的人,是會把知識簡化,把書本讀薄的。先學(xué)學(xué)你能思考到答案的哪一步,學(xué)著去偷分。當(dāng)然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。

        3、如何學(xué)好高中數(shù)學(xué)

        1)先看筆記后做作業(yè)。有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

        2)做題之后加強反思。學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的.題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思?偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構(gòu)建起一個內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。

        3)主動復(fù)習(xí)總結(jié)提高。進(jìn)行章節(jié)總結(jié)是非常重要的。初中時是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時間,也沒有明確指出做總結(jié)的時間。

      高考數(shù)學(xué)知識點總結(jié)5

        人教版高考數(shù)學(xué)復(fù)習(xí)知識點

        1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

        2.判定兩個平面平行的方法:

        (1)根據(jù)定義--證明兩平面沒有公共點;

        (2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

        (3)證明兩平面同垂直于一條直線。

        3.兩個平面平行的主要性質(zhì):

        (1)由定義知:“兩平行平面沒有公共點”;

        (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;

        (3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

        (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

        (5)夾在兩個平行平面間的平行線段相等;

        (6)經(jīng)過平面外一點只有一個平面和已知平面平行。

        高考高三數(shù)學(xué)復(fù)習(xí)知識點

        1、三類角的求法:

        ①找出或作出有關(guān)的角。

       、谧C明其符合定義,并指出所求作的角。

       、塾嬎愦笮(解直角三角形,或用余弦定理)。

        2、正棱柱——底面為正多邊形的直棱柱

        正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

        正棱錐的計算集中在四個直角三角形中:

        3、怎樣判斷直線l與圓C的位置關(guān)系?

        圓心到直線的距離與圓的半徑比較。

        直線與圓相交時,注意利用圓的“垂徑定理”。

        4、對線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

        不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法

        培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

        (1)欣賞數(shù)學(xué)的美感

        比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

        通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。

        (2)注意到數(shù)學(xué)在實際生活中的應(yīng)用。

        例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的.知識就可以理解.

        學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊.

        人教版高考年級數(shù)學(xué)知識點

        1、直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        2、直線的斜率

        ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

        ②過兩點的直線的斜率公式:

        注意下面四點:

        (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無關(guān);

        (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

        (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。

        云南高考數(shù)學(xué)知識點總結(jié)

      高考數(shù)學(xué)知識點總結(jié)6

        圓與圓的位置關(guān)系的判斷方法

        一、設(shè)兩個圓的半徑為R和r,圓心距為d。

        則有以下五種關(guān)系:

        1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。

        2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。

        3、d=R—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。

        4、d

        5、d

        二、圓和圓的位置關(guān)系,還可用有無公共點來判斷:

        1、無公共點,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。

        2、有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。

        3、有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

      高考數(shù)學(xué)知識點總結(jié)7

        易錯點1 遺忘空集致誤

        錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況?占且粋特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導(dǎo)致解題錯誤或是解題不全面。 易錯點2 忽視集合元素的三性致誤

        錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。

        易錯點3 四種命題的結(jié)構(gòu)不明致誤

        錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的

        否定是全稱命題。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。

        易錯點4 充分必要條件顛倒致誤

        錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

        回憶一下初中學(xué)過的“等價于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價于B,記作A<=>B!俺湟獥l件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題A等價于命題B,那么我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。0時,Δy/Δx-->常數(shù)A,就說函數(shù)y=f(x)在點x0處可導(dǎo),并把A叫做f(x)在點x0處的導(dǎo)數(shù)(瞬時變化率).記作f’(x0)的幾何意義是曲線y=f(x)在點(x0,f(x0))處的切線的斜率.瞬時速度就是位移函數(shù)s對時間t的導(dǎo)數(shù).

        2)如果函數(shù)f(x)在開區(qū)間(a,b)內(nèi)每一點都可導(dǎo),其導(dǎo)數(shù)值在(a,b)內(nèi)構(gòu)成一個新的函數(shù),叫做f(x)在開區(qū)間(a,b)內(nèi)導(dǎo)數(shù),記作f’(x).

        3)如果函數(shù)f(x)在點x0處可導(dǎo),那么函數(shù)y=f(x)在點x0處連續(xù).

        2.函數(shù)的導(dǎo)數(shù)與導(dǎo)數(shù)值的區(qū)別與聯(lián)系:導(dǎo)數(shù)是原來函數(shù)的導(dǎo)函數(shù),而導(dǎo)數(shù)值是導(dǎo)函數(shù)在某一點的函數(shù)值,導(dǎo)數(shù)值是常數(shù).

        3.求導(dǎo)

        在高中數(shù)學(xué)導(dǎo)數(shù)求導(dǎo)過程中,要仔細(xì)分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣求導(dǎo)法則,聯(lián)系基本函數(shù)求導(dǎo)公式,對于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)恒等變形,對于比較復(fù)雜的函數(shù),如果直接套用求導(dǎo)法則,會使求導(dǎo)過程繁瑣冗長,且易出錯,此時,可將解析式進(jìn)行合理變形,轉(zhuǎn)化為教易求導(dǎo)的結(jié)構(gòu)形

      【高考數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

      數(shù)學(xué)高考知識點總結(jié)02-22

      數(shù)學(xué)高考必考知識點總結(jié)11-12

      高考數(shù)學(xué)知識點總結(jié)10-03

      高考數(shù)學(xué)必考知識點總結(jié)02-11

      高考數(shù)學(xué)知識點總結(jié)【熱】12-23

      【熱門】高考數(shù)學(xué)知識點總結(jié)12-26

      【薦】高考數(shù)學(xué)知識點總結(jié)12-26

      高考數(shù)學(xué)知識點總結(jié)【薦】12-26

      【熱】高考數(shù)學(xué)知識點總結(jié)12-26

      高考數(shù)學(xué)知識點總結(jié)【精】02-17