亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 二次根式教案

      時間:2024-08-22 17:56:40 教案 投訴 投稿

      二次根式教案范文集合6篇

        作為一名教師,往往需要進(jìn)行教案編寫工作,教案有助于順利而有效地開展教學(xué)活動。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編精心整理的二次根式教案6篇,希望能夠幫助到大家。

      二次根式教案范文集合6篇

      二次根式教案 篇1

        活動1、提出問題

        一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

        問題:10+20是什么運算?

        活動2、探究活動

        下列3個小題怎樣計算?

        問題:1)-還能繼續(xù)往下合并嗎?

        2)看來二次根式有的'能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

        二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

        活動3

        練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

        創(chuàng)設(shè)問題情景,引起學(xué)生思考。

        學(xué)生回答:這個運動場要準(zhǔn)備(10+20)平方米的草皮。

        教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運算。

        我們可以利用已學(xué)知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

        教師引導(dǎo)驗證:

       、僭O(shè)=,類比合并同類項或面積法;

        ②學(xué)生思考,得出先化簡,再合并的解題思路

        ③先化簡,再合并

        學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

        教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。

        提醒學(xué)生注意先化簡成最簡二次根式后再判斷。

      二次根式教案 篇2

        教學(xué)目的

        1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

        2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

        教學(xué)重點

        最簡二次根式的定義。

        教學(xué)難點

        一個二次根式化成最簡二次根式的方法。

        教學(xué)過程

        一、復(fù)習(xí)引入

        1.把下列各根式化簡,并說出化簡的根據(jù):

        2.引導(dǎo)學(xué)生觀察考慮:

        化簡前后的根式,被開方數(shù)有什么不同?

        化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

        3.啟發(fā)學(xué)生回答:

        二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

        二、講解新課

        1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

        滿足下列兩個條件的二次根式叫做最簡二次根式:

        (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

        (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

        最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

        2.練習(xí):

        下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

        3.例題:

        例1 把下列各式化成最簡二次根式:

        例2 把下列各式化成最簡二次根式:

        4.總結(jié)

        把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

        當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的`因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

        當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

        此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

        三、鞏固練習(xí)

        1.把下列各式化成最簡二次根式:

        2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

        四、小結(jié)

        本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。

        五、布置作業(yè)

        下列各式化成最簡二次根式:

      二次根式教案 篇3

        一、教學(xué)目標(biāo)

        1.理解分母有理化與除法的關(guān)系.

        2.掌握二次根式的分母有理化.

        3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.

        4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的`數(shù)學(xué)思想

        二、教學(xué)設(shè)計

        小結(jié)、歸納、提高

        三、重點、難點解決辦法

        1.教學(xué)重點:分母有理化.

        2.教學(xué)難點:分母有理化的技巧.

        四、課時安排

        1課時

        五、教具學(xué)具準(zhǔn)備

        投影儀、膠片、多媒體

        六、師生互動活動設(shè)計

        復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

        七、教學(xué)過程

        【復(fù)習(xí)提問】

        二次根式混合運算的步驟、運算順序、互為有理化因式.

        例1 說出下列算式的運算步驟和順序:

       。1) (先乘除,后加減).

       。2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).

       。3)辨別有理化因式:

        有理化因式: 與 , 與 , 與 …

        不是有理化因式: 與 , 與 …

        化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

        例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

        引入新課題.

        【引入新課】

        化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

        例2 把下列各式的分母有理化:

       。1) ; (2) ; (3)

        解:略.

        注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

      二次根式教案 篇4

        目 標(biāo)

        1. 熟練地運用二次根式的性質(zhì)化簡二次根式;

        2. 會運用二次根式解決簡單的實際問題;

        3. 進(jìn)一步體驗二次根式及其運算的實際意義和應(yīng)用價值。

        教學(xué)設(shè)想

        本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復(fù)雜。

        教 學(xué) 程序 與 策 略

        一、預(yù)習(xí)檢測

        1.解決節(jié)前問題:

        如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

        歸納:

        在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。

        二、合作交流:

        1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

        讓學(xué)生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的'算式中有哪些運算?能化簡嗎?

        注意解題格式

        教 學(xué) 程 序 與 策 略

        三、鞏固練習(xí):

        完成課本P17、1,組長檢查反饋;

        四、拓展提高:

        1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

        師生共同分析解題思路,請學(xué)生寫出解題過程。

        五、課堂小結(jié):

        1.談一談:本節(jié)課你有什么收獲?

        2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題

        六、堂堂清

        1: 作業(yè)本(2)

        2:課本P17頁:第4、5題選做。

      二次根式教案 篇5

        一、教學(xué)目標(biāo)

        1。使學(xué)生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

        2。使學(xué)生掌握化簡一個二次根式成最簡二次根式的方法。

        3。使學(xué)生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

        二、教學(xué)重點和難點

        1。重點:能夠把所給的二次根式,化成最簡二次根式。

        2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

        三、教學(xué)方法

        通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

        四、教學(xué)手段

        利用投影儀。

        五、教學(xué)過程

       。ㄒ唬┮胄抡n

        提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

        了。這樣會給解決實際問題帶來方便。

       。ǘ┬抡n

        由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

        這兩個二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

        總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

        1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

        2。被開方數(shù)中不含能開得盡方的'因數(shù)或因式。

        例1 指出下列根式中的最簡二次根式,并說明為什么。

        分析:

        說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

        例2 把下列各式化成最簡二次根式:

        說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

        例3 把下列各式化簡成最簡二次根式:

        說明:

        1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點,即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

        2。要提問學(xué)生

        問題,通過這個小題使學(xué)生明確如何使用化簡中的條件。

        通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。

        注意:

       、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

       、诋(dāng)一個式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

        (三)小結(jié)

        1。滿足什么條件的根式是最簡二次根式。

        2。把一個二次根式化成最簡二次根式的主要方法。

       。ㄋ模┚毩(xí)

        1。指出下列各式中的最簡二次根式:

        2。把下列各式化成最簡二次根式:

        六、作業(yè)

        教材P。187習(xí)題11。4;A組1;B組1。

        七、板書設(shè)計

      二次根式教案 篇6

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的概念.

        2.內(nèi)容解析

        本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運算打基礎(chǔ).

        教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.

        本節(jié)課的教學(xué)重點是:了解二次根式的概念;

        二、目標(biāo)和目標(biāo)解析

        1.教學(xué)目標(biāo)

       。1)體會研究二次根式是實際的需要.

       。2)了解二次根式的概念.

        2. 教學(xué)目標(biāo)解析

        (1)學(xué)生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

        (2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

        三、教學(xué)問題診斷分析

        對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.

        本節(jié)課的教學(xué)難點為:理解二次根式的雙重非負(fù)性.

        四、教學(xué)過程設(shè)計

        1.創(chuàng)設(shè)情境,提出問題

        問題1你能用帶有根號的的式子填空嗎?

       。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

       。2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

       。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

        師生活動:學(xué)生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價.

        【設(shè)計意圖】讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

        問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

        師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.

        【設(shè)計意圖】為概括二次根式的概念作鋪墊.

        2.抽象概括,形成概念

        問題3 你能用一個式子表示一個非負(fù)數(shù)的算術(shù)平方根嗎?

        師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

        【設(shè)計意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

        追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?

        師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.

        【設(shè)計意圖】進(jìn)一步加深學(xué)生對二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.

        3.辨析概念,應(yīng)用鞏固

        例1 當(dāng) 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?

        師生活動:引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的.被開方數(shù)為非負(fù)數(shù)的理解.

        例2 當(dāng) 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?

        師生活動:先讓學(xué)生獨立思考,再追問.

        【設(shè)計意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解.

        問題4 你能比較 與0的大小嗎?

        師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強化學(xué)生對二次根式本身為非負(fù)數(shù)的理解,

        【設(shè)計意圖】通過這一活動的設(shè)計,提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.

        4.綜合運用,鞏固提高

        練習(xí)1 完成教科書第3頁的練習(xí).

        練習(xí)2 當(dāng)x 是什么實數(shù)時,下列各式有意義.

        (1) ;(2) ;(3) ;(4) .

        【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

        【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

        5.總結(jié)反思

        教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.

        (1)本節(jié)課你學(xué)到了哪一類新的式子?

       。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

       。3)二次根式與算術(shù)平方根有什么關(guān)系?

        師生活動:教師引導(dǎo),學(xué)生小結(jié).

        【設(shè)計意圖】:學(xué)生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學(xué)習(xí)重點,掌握解題方法.

        6.布置作業(yè):

        教科書習(xí)題16.1第1,3,5, 7,10題.

        五、目標(biāo)檢測設(shè)計

        1. 下列各式中,一定是二次根式的是( )

        A. B. C. D.

        【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).

        2. 當(dāng) 時,二次根式 無意義.

        【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

        3.當(dāng) 時,二次根式 有最小值,其最小值是 .

        【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運用.

        4.對于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.

        【設(shè)計意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

      【二次根式教案】相關(guān)文章:

      二次根式教案02-15

      二次根式的加減教案01-19

      二次根式教案優(yōu)秀08-24

      二次根式教案15篇02-16

      二次根式教案(15篇)02-27

      二次根式教案合集10篇04-04

      二次根式教案匯總五篇04-03

      二次根式教案匯編6篇04-08

      二次根式教案范文8篇04-09

      二次根式教案合集5篇04-05