亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 分數(shù)的基本性質(zhì)教案

      時間:2023-04-07 13:49:02 教案 投訴 投稿

      分數(shù)的基本性質(zhì)教案匯總10篇

        作為一位杰出的教職工,就不得不需要編寫教案,教案是備課向課堂教學轉(zhuǎn)化的關節(jié)點。怎樣寫教案才更能起到其作用呢?下面是小編為大家整理的分數(shù)的基本性質(zhì)教案10篇,歡迎閱讀,希望大家能夠喜歡。

      分數(shù)的基本性質(zhì)教案匯總10篇

      分數(shù)的基本性質(zhì)教案 篇1

        教學內(nèi)容:

        人教版《義務教育課程標準實驗教科書數(shù)學》五年級(下冊)75—78頁。

        設計思路:

        《分數(shù)的基本性質(zhì)》是人教版《義務教育課程標準實驗教科書數(shù)學》五年級(下冊)第四單元《分數(shù)的意義和性質(zhì)》的第三節(jié)內(nèi)容。它是在學生已掌握了商不變的性質(zhì)之后,并在已有應用經(jīng)驗的基礎上進行學習的。這節(jié)課的教學重點是理解和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決實際問題。教材共安排了兩道例題、“做一做1、2題”等。教學中創(chuàng)設學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應用于實踐解決簡單的實際問題,做到學以致用,發(fā)展學生思維,提高學生學習數(shù)學的興趣,感受學習數(shù)學的樂趣,培養(yǎng)學生樂于探究的人生態(tài)度。

        教學目標:

        1.通過教學理解和掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù),再應用這一規(guī)律解決簡單的實際問題。

        2.引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據(jù)的思考、探究問題,培養(yǎng)學生的抽象概括能力。

        3.滲透初步的辯證唯物主義思想教育,使學生收到數(shù)學思想方法的熏陶,培養(yǎng)探究的學習態(tài)度。

        教學重點:

        理解和掌握分數(shù)的基本性質(zhì)。

        教學難點:

        應用分數(shù)的基本性質(zhì)解決實際問題。

        教學方法:

        直觀演示法、討論法等。

        學法:

        合作交流、自主探究。

        教學準備:

        每位學生準備三張同樣大小的正方形(或長方形)的紙片;教師:長方形(或正方形)的紙片、PPT課件等。

        教學過程:

        一.創(chuàng)設情景,激發(fā)興趣

        (課件出示)1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

        2.說一說:(1)商不變的性質(zhì)是什么?(2)分數(shù)與除法的關系是什么?

        ( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )

        二.大膽猜想,揭示課題

        學生大膽猜想:在除法里有商不變的性質(zhì),在分數(shù)里會不會有類似的性質(zhì)存在呢?(生答:有。┻@個性質(zhì)是什么呢?

        隨著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。

        三 .探索研究,驗證猜想

        1. 動手操作,驗證性質(zhì)。

        (1)學生拿出三張同樣大小的正方形(或長方形)紙片,分別平均分成4份、8份、12

        份,并分別給其中的.1份、2份、3份涂上色,把涂色部分用分數(shù)表示出來。 圖(略)????引導學生觀察、思考:你發(fā)現(xiàn)了什么?

        (2)小組合作:①觀察、分析、比較在組內(nèi)交流你的發(fā)現(xiàn)。

       、诤献鹘涣鳎魇慵阂。

        123③選代表全班匯報、交流,師相機板書:4812

        123(3)合作討論: 為什么相等? 4812

        ①以小組為單位思考討論:(引導)它們的分子、分母各是按照什么規(guī)律變化的? ②觀察它們的分子、分母的變化規(guī)律,在組內(nèi)用自己的話說一說。

        2.分組匯報,歸納性質(zhì)。

        a.從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。

       。ǜ鶕(jù)學生回答

        b.從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?

        (根據(jù)學生的回答)

        c.有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?

        d.綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?

       。4)引導學生概括出分數(shù)的基本性質(zhì),回應猜想。

        對這句話你還有什么要補充的?(補充“零除外”)

        討論:為什么性質(zhì)中要規(guī)定“零除外”?

       。5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應的字下面點上著重號。

        師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關鍵的字詞要重讀)。

        3.慧眼掃描(下列的式子是否正確?為什么?)(課件出示)

        33×263(1) ==(生: 的分子與分母沒有同時乘以2,分數(shù)的大小改變。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)1212÷6212

        的大小改變。) 11×331==(生:的分子乘以3,而分母除以3,沒有同時乘或除以,1212÷3412(3)

        分數(shù)的大小改變。) 22×x2x(4)==(生:x在這里代表任意數(shù),當x=0時,分數(shù)無意義。) 55×x5x

        四.回歸書本,探源獲知

        1.瀏覽課本第75—78頁的內(nèi)容。

        2.看了書,你又有什么收獲?還有什么疑問嗎?(指名匯報、交流)

        3.分數(shù)的基本性質(zhì)與商不變性質(zhì)的比較。

        (1)小組合作:討論分數(shù)的基本性質(zhì)與商不變性質(zhì)的異同。

        (2)小組內(nèi)交流。

        (3)選代表全班交流、匯報。

        (4)小結(jié)歸納:分數(shù)的基本性質(zhì)與商不變性質(zhì)內(nèi)容相同,只是名稱不同罷了!

        4.自主學習并完成例2,請二名學生說出思路。

        五.鞏固深化,拓展思維(PPT演示文稿出示下列題目)

        1.想一想,填一填。

        33×( )988÷( )() 55×( )( )2424÷( )3

        學生口答后,要求說出是怎樣想的?

        2.在下面( )內(nèi)填上合適的數(shù)。

        要求:后二題采取師生對出數(shù)的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。

        3.思維訓練(選擇你喜愛的一道題完成)

        3(1)的分子加上6,要使分數(shù)的大小不變,分母應加上多少? 5

       。2)1/a=7/b(a、b是自然數(shù),且不為0),當a=1,2,3,4??時,b分別等于幾?

        討論:a與b之間的關系是怎樣的?為什么會存在這樣的關系?依據(jù)是什么?

       。3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不變的分數(shù)。

        思考:分數(shù)的分母相同了,有什么作用?揭示學習分數(shù)的基本性質(zhì)的重要性,鼓勵學生學好、用好。

        六.全課小結(jié)

        本節(jié)課你收獲了什么?同桌交流分享你獲取知識的快樂!(匯報全班交流)

        七.布置作業(yè)

        P77—78練習十四第1、5、8題。

        教學反思

        “分數(shù)的基本性質(zhì)”是在學生已掌握了商不變的性質(zhì)之后,并在已有應用經(jīng)驗的基礎上進行學習的。這節(jié)課用“猜想——驗證——反思”的方式學習分數(shù)的基本性質(zhì),是學生在大問題背景下的一種研究性學習。這不僅對學生提出了挑戰(zhàn),而且對教師也提出了挑戰(zhàn)。教學中創(chuàng)設學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應用于實踐解決簡單的實際問題,做到學以致用,發(fā)展學生思維,提高學生學習數(shù)學的興趣,感受學習數(shù)學的樂趣,培養(yǎng)學生樂于探究的人生態(tài)度。

        本節(jié)課教學設計突出的特點是學法的設計。從“創(chuàng)設情境、激發(fā)興趣;大膽猜想、揭示課題;探索研究、驗證猜想;回歸書本、探源獲知;鞏固深化、拓展思維”到“全課小結(jié)”每一個環(huán)節(jié)完全是為學生自主探究、合作交流學習而設計的。通過教學總結(jié)了自己的得與失如下:

        1. 創(chuàng)設情境,可以更好地激發(fā)學生的學習興趣,學生有了這樣的學習興趣,我想這節(jié)課已經(jīng)成功了一半。因為興趣是最好的老師!

        2.學生在操作中大膽猜想。

        新課標積極倡導學生 “主動參與、樂于探究、勤于思考”,以培養(yǎng)學生獲取知識、分析和解決問題的能力。因此我由學生的猜想入手,可以最大限度的調(diào)動學生“驗證自己猜想”的積極性和主動性,接下來通過學生:動手操作、觀察、比較、分析、討論、合作交流、探究等活動都是為了驗證學生自己的猜想,這些環(huán)節(jié)充分發(fā)揮了學生的主動性、積極性,從而凸顯學生在學習中的主體地位。教師在教學過程成為學生學習的引導者、支持者、服務者。同時創(chuàng)設猜想的情境,學生通過動手操作、觀察、比較、分析、討論、合作交流的探究方式來經(jīng)歷數(shù)學,獲得感性經(jīng)驗,進而理解所學知識,完成知識創(chuàng)造過程。并且也為學生多彩的思維、創(chuàng)設良好的平臺,由于學生的經(jīng)歷不同,認識問題的角度不同,促使他們解決問題的策略多樣化,使生生、師生評價在價值觀上都得到了發(fā)展。

        3.學生在自主探索中科學驗證。

      分數(shù)的基本性質(zhì)教案 篇2

        教學內(nèi)容:省編義務教材第十冊第91—93頁例1、例2。

        教學目標:

        1、體驗分數(shù)基本性質(zhì)的探究過程,建構(gòu)分數(shù)基本性質(zhì)的意義內(nèi)涵。

        2、溝通分數(shù)的基本性質(zhì)和商不變性質(zhì)的內(nèi)在聯(lián)系,實現(xiàn)新知化歸舊知,并與后面約分和通分的學習作好前期孕伏。

        3、通過猜想、驗證、得出結(jié)論這充分自主的數(shù)學活動,促進學生學習經(jīng)驗的不斷積累。

        課前準備:

        課件,學具袋一個(線段圖紙、長方形、繩子)、探究紙一張

        教學過程:

        1.創(chuàng)設情境,作好鋪墊

        出示四分之二后說:老師的信封里有一道算式,這道算式和這個分數(shù)的值相等,你們猜這是一道怎樣的算式?(除法算式。)你能具體猜出是怎樣一道除法算式。(2÷4)

        為什么你會猜是一道除法算式?(分數(shù)與除法有密切的關系)

        除法與分數(shù)有什么樣的關系?

       。ê诎迳铣鍪荆罕怀龜(shù)÷除數(shù)=)

        根據(jù)2÷4這道除法算式,每人都試著說一道與它相等的除法算式。(根據(jù)學生板書:1÷23÷64÷85÷10100÷……)

        為什么你認為100÷與2÷4的商是一樣的?(2和4同時乘以50商不變,這是根據(jù)商不變性質(zhì))

        什么是商不變性質(zhì)?(出示:被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)(0除外),商不變。)

        2、遷移猜想,引疑激思

        分數(shù)與除法有這樣的關系,除法中有商不變性質(zhì),那你們猜分數(shù)中有可能存在著類似的性質(zhì)嗎?(有)你能具體說一說?

        交流得出:分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。

        3、自主探究,驗證猜想

        也許你們的猜想是正確的,科學家的發(fā)現(xiàn)往往也是從猜想開始的,但是只有通過驗證得到的結(jié)論才是科學的,這節(jié)課我們也學著來做一名小數(shù)學家。

        (1)初步驗證

       、俪鍪荆禾骄繄蟾鎲危寣W生讀要求:

        a.同桌合作:兩人各寫一個分數(shù),將它的`分子、分母同時乘以或除以一個相同的數(shù),算出新的分數(shù)。

        b.選擇合理的方法驗證所前后兩個分數(shù)是否相等。

        c.填寫好探究報告單。

        選擇探究的

        分 數(shù)

        分子和分母同時乘以或除以

        一個相同的數(shù)

        得到的

        分 數(shù)

        選擇的分數(shù)與得到的分數(shù)是否相等

        相等( ) 不相等( )

        猜想是否成立

        成立( ) 不成立( )

        選擇的分數(shù)與得到的分數(shù)是否相等相等()不相等()

        猜想是否成立成立()不成立()

        *:驗證方法可用折紙、畫線段圖、計算、實物……

       、趯W生合作進行探究。

       、廴嘟涣鳎

        a、同桌一起上來,拿好探究報告單及驗證材料等。

        b、兩人合作,一人講解、一人驗證演示。

        c、得到結(jié)論:

       。ń涣2-3組后)問全班同學:你們得到怎樣的結(jié)論?(一致通過)

        剛才我們通過集體努力用不同的方法、不同的分數(shù)驗證了我們的猜想是成立的。這就是分數(shù)的基本性質(zhì),板書:分數(shù)的基本性質(zhì)。(齊讀)

        4、議論爭辯,頓悟創(chuàng)新

        讀一讀分數(shù)的基本性質(zhì),你認為哪些字詞是比較重要的。這里的“相同的數(shù)”指的是什么數(shù)?為什么要“0除外”?

        5、訓練技能,激勵發(fā)展

        剛才我們通過自己的猜想、驗證得出的這條規(guī)律,學習了分數(shù)的基本性質(zhì),到底有什么作用呢?讓我們一起來體會一下。

        (1)練習明目的

        根據(jù)分數(shù)的基本性質(zhì),填空。

        1/2=()/8=5/()=()/6=7/()

        采取師生對數(shù)的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。

        (2)慧眼辯是非

       。3)變式練思維

        把下面每組中的異分母分數(shù)化成同分母分數(shù)。

        A、3/4,4/7B、5/6,4/9C、3/5,5/8

        分數(shù)的分母相同了,有什么作用?揭示學習分數(shù)的基本性質(zhì)的重要性,鼓勵學生學好、用好。

       。4)競賽促智慧

        ①在1—9九個數(shù)字中任選一些數(shù)字組成大小相等的分數(shù)。

        可以有:1/2=3/6=4/81/3=2/62/3=4/6這三組。

        并讓學生繼續(xù)往下說,從而得出:任何一個分數(shù)與之相等的分數(shù)有無數(shù)個。

       、诔鍪荆1/a=7/b(說明:a、b都不是0。)

        搶答:a=2、a=3、a=6、b=28、b=56時a或b的值。

        連貫口答:a=1、2、3、4、5……時b的值。(滲透正比例)

        討論:a、b之間的關系是怎樣的?為什么會存在這樣的關系?依據(jù)是什么?

        6、回顧,掌握方法

        今天這節(jié)課我們學習的分數(shù)的基本性質(zhì),回憶一下我們是怎樣學習的?

        學生可能會回答:

        生1:我們是根據(jù)“商不變的性質(zhì)”來學習“分數(shù)的基本性質(zhì)”的。

        生2:我們是通過猜測的方法學的。

        生3:我們還用驗證的方法學習。

        ……

        結(jié)果語:是的,這節(jié)課,我們利用除法和分數(shù)的關系以及商不變性質(zhì),猜想出分數(shù)的基本性質(zhì),并且進行了驗證與運用,其實數(shù)學知識都是相互聯(lián)系的,學習數(shù)學就要學會利用已有知識,去學習新的知識,這就是學習數(shù)學的一把金鑰匙。老師把這把金鑰匙送給每一位同學。

      分數(shù)的基本性質(zhì)教案 篇3

        教學目的:

        1、理解分數(shù)的基本性質(zhì);

        2、初步掌握分數(shù)性質(zhì)的應用;

        3、培養(yǎng)學生觀察——探索——抽象——概括的能力;

        4、滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點。

        教學重點:

        從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。

        教學難點:

        形成對分數(shù)的基本性質(zhì)的統(tǒng)一認知。

        教學準備:多媒體,自制演示教具。

        教學過程:

        一、激趣引新:

        1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節(jié)課我們就來解決這個問題。

        2、在下面的()中填上合適的數(shù)。

        1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

        同學們現(xiàn)在已經(jīng)能用分數(shù)的知識來解決問題了。

        二、啟發(fā)引導,探索新知。

        1、下面是六年級三個班的同學到三塊同樣大小面積的正方形地里去種樹,哪個班種植的`面積大一些呢?

        通過圖形的平移、旋轉(zhuǎn)等方法看出三個班種植面積一樣大。

        2.引導觀察得出結(jié)論。

       。1)通過拼圖得到1/2=2/4=4/8

        (2)引導觀察、比較,提出問題:分子,分母都不相同,它們的大小為什么相同呢?

       。3)引導思考探索變化規(guī)律:

        從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

        反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

        3.共同討論,引導學生抽象概括出分數(shù)的基本性質(zhì):

       。1)怎么做能使分數(shù)的分子和分母發(fā)生變化,而分數(shù)的大小都不變呢?

       。2)變化時同時乘或除以小數(shù)可以嗎?

        (3)0可以嗎?3/4=3×0/4×0=?(分數(shù)的分母不能為0,在除法里0不能作除數(shù),分子和分母都乘或除以相同的數(shù),這個數(shù)不能是0。)

        歸納分數(shù)基本性質(zhì):分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。

        4.學習分數(shù)的基本性質(zhì)以后,感覺過去我們學過類似的性質(zhì)是什么呢?(商不變的性質(zhì))

       。1)練習在□中填上合適的數(shù)

        1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

       。2)你能把1÷2這個除法算式改寫成分數(shù)形式?

        你能用今天所學的知識解決老爺爺分地的問題嗎?(學生交流、匯報)

        5.組織練習

       。1)判斷:

        1/5=1/5×3=1/5()

        5/6=5×2/6×3=10/18()

        8/12=8×4/12÷4=32/3()

        2/5=2+2/5+2=4/7()

        3/4=3÷0.5/4÷0.5()

        分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()

        (2)畫一畫、填一填

        (3)填空

        1/2=1×()/2×()=6/()

        10/24=10○()/24○()=()/12

        15/60=()/203/()=9/12

        6/18=()/()=()/()(有多少種填法)

        6.通過練習在此性質(zhì)中哪些是關鍵詞?

        7.鞏固練習(選擇你喜歡的一題來做)

       。1)與1/2相等的分數(shù)有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)?

       。2)9/24和20/32哪一個數(shù)大一些,你能講出判斷的依據(jù)嗎?

        三、課堂總結(jié)

        今天這節(jié)課同學們學了分數(shù)的基本性質(zhì),有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學們把今天所學的知識運用到今后的學習和生活中去,做一個生活的有心人。

        四、課堂作業(yè):練習十四第1——3題。

        板書設計:

        分數(shù)的基本性質(zhì)

        1/2=1×2/2×2=2/4=2×2/4×2=4/8

        分數(shù)的分子和分母同時乘以一個不為0的數(shù)分數(shù)的大小不變

        4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

        分數(shù)的分子和分母同時除以一個不為0的數(shù)分數(shù)的大小不變

        綜上所述分數(shù)的基本性質(zhì)是:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

      分數(shù)的基本性質(zhì)教案 篇4

        設計說明

        1.注重情境創(chuàng)設,激發(fā)學生的學習興趣。

        偉大的科學家愛因斯坦說過:“興趣是最好的老師!币簿褪钦f一個人一旦對某個事物產(chǎn)生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產(chǎn)生愉快的情緒,因此教學時要重視興趣在智力開發(fā)中的作用。本課時的教學通過分餅這一故事情境來創(chuàng)設一種和諧、愉悅的氣氛,激發(fā)學生的學習興趣和探究新知的積極性。聽教師講完故事之后,學生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的,,。接著教師提問設疑,導入新課。

        2.突出學生的主體地位,在實踐操作中掌握新知。

        學生是學習的主體,教師要時刻關注學生的主體地位。在探究分數(shù)的基本性質(zhì)的過程中,給予學生充分的學習空間,讓學生自主探究,經(jīng)歷折一折、畫一畫、剪一剪、比一比的過程,得出分數(shù)的基本性質(zhì),體驗成功的快樂。

        課前準備

        教師準備 PPT課件

        學生準備 若干張同樣大小的圓形紙片 彩筆

        教學過程

        ⊙故事引入

        1.教師講故事。

        師:老師給大家講一個分餅的故事,你們想聽嗎?(想)三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準備分給他們?nèi)值艹裕瑡寢屜劝训谝粡堬炂骄殖蓛煞,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份。”媽媽點點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份。”媽媽又點點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。

        大毛、二毛、三毛都滿意地笑了,媽媽也笑了。

        設計意圖:借助故事給學生創(chuàng)設一個溫馨的.學習情境,自然導入新課,迅速吸引學生的注意力,激發(fā)學生的學習興趣。

        2.探究驗證。

        (1)提出猜想。

        師:同學們,你們知道三兄弟之間到底誰分得的餅多嗎?

        生:同樣多。

        師:這只是大家的猜想,大家的猜想對不對呢?下面就讓我們當一次小數(shù)學家,一起來驗證這個猜想吧!

        (2)驗證猜想。

        請同學們拿出課前準備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。

        ①折一折:把每張圓形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。

        ②涂一涂:在折好的圓形紙片上分別把其中的1份、2份、4份涂上顏色,并用分數(shù)表示出來。

       、奂粢患簦喊褕A形紙片中的涂色部分剪下來。

       、鼙纫槐龋喊鸭粝碌耐可糠种丿B,比一比。

        師:通過比較,結(jié)果是怎樣的?

        生:同樣大。

        設計意圖:通過自主猜想、自主驗證、自主發(fā)現(xiàn),讓學生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態(tài)的知識轉(zhuǎn)化為動態(tài)的求知過程,經(jīng)歷分數(shù)的基本性質(zhì)的形成過程。

        3.揭示課題。

        師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學習的內(nèi)容:分數(shù)的基本性質(zhì)。(師板書,生齊讀課題)

        ⊙探究新知

        1.觀察比較,探究規(guī)律。

        (1)請同學們觀察,比較三個分數(shù)的大小。

        師:三兄弟分得的餅同樣多,那么這三個分數(shù)的大小是怎樣的呢?(相等)

        師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。

        (2)請同學們仔細觀察,這三個分數(shù)什么變了,什么沒變?(分子、分母變了,大小沒變)

        師:這三個分數(shù)的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?

        (課件出示:比較它們的分子和分母)

       、購淖笸铱矗前凑帐裁匆(guī)律變化的?

        ②從右往左看,又是按照什么規(guī)律變化的?小組內(nèi)討論,交流一下你們的發(fā)現(xiàn)。

        師:我們從左往右看,誰愿意說一說自己的發(fā)現(xiàn)?(分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變)

        師:我們從右往左看,誰愿意說一說自己的發(fā)現(xiàn)?[分數(shù)的分子和分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變]

        師:你們能把這兩個發(fā)現(xiàn)合并成一句話嗎?[分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變]

        師:請同學們思考一下,這個數(shù)為什么不能是0?同桌之間討論。(因為在分數(shù)中,分母不能為0,并且在除法里,0不能作除數(shù),所以這個數(shù)不能是0)

        (3)教師總結(jié)分數(shù)的基本性質(zhì)。(板書)

      分數(shù)的基本性質(zhì)教案 篇5

        教學目標:

        1.理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。

        2.理解和掌握分數(shù)的基本性質(zhì)。

        3.較好的實現(xiàn)知識教育與思想教育的有效結(jié)合。

        教學重點:

        理解和掌握分數(shù)的基本性質(zhì)。

        教學難點:

        能熟練、靈活地運用分數(shù)的基本性質(zhì)。

        教學過程:

        一、創(chuàng)設情景

        師:同學們,為了讓你們了解到更多的科技知識,在科技周活動中,學校做了三塊科普展板(投影出示教材中的三塊展板)。同學們認真觀察,你們能提出什么問題?

        師:猜想對解決問題很重要,它們到底相不相等?下面以小組為單位,想辦法來驗證一下。

        二、新授

        師:同學們想了很多好的方法,哪個小組愿意匯報一下?

        生1:我們組是用畫圖的方法來驗證的。我們先畫了三個大小一樣的正方形表示三塊展板,把它們分別平均分成2份、4份和8份,再分別去其中的1份、2份和4份涂上顏色(展示學生畫的圖)。通過比較我們發(fā)現(xiàn),涂色部分的大小是相等的,所以

        生2:我們組是用折紙的方法來驗證的。我們先取了三根同樣長的`紙條,通過對折把它們分別平均分成2份、4份和8份,分別涂色表示(展示學生的折紙情況)。通過折紙我們組也發(fā)現(xiàn)(學生在小組中討論、驗證)

        師:我們發(fā)現(xiàn)的這個規(guī)律,就是分數(shù)的基本性質(zhì)。

        同學們現(xiàn)在小組內(nèi)總結(jié)一下,什么是分數(shù)的基本性質(zhì)?

       。▽W生認真討論)

        師:同學們匯報一下你們的討論結(jié)果。

        三、 自主練習 鞏固提高

        課本第80頁1、2、3、題。

        其中,第1題引導學生通過涂色和比較,加深對分數(shù)基本性質(zhì)的直觀感受。

        第2題二生爬黑板板演,第3、4 題學生自做。師巡視指導。

        課堂小結(jié) :

        一生小結(jié),他生補充,教師評判。

      分數(shù)的基本性質(zhì)教案 篇6

        教學目的

        1.使學生理解和掌握分數(shù)的基本性質(zhì),能應用“性質(zhì)”解決一些簡單問題.

        2.培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.

        3.滲透“形式與實質(zhì)”的辯證唯物主義觀點,使學生受到思想教育.

        教學過程

        一、談話.

        我們已經(jīng)學習了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、

        整數(shù)的互化方法.今天我們繼續(xù)學習分數(shù)的有關知識.

        二、導入新課.

        (一)教學例1.

        出示例1:用分數(shù)表示下面各圖中的陰影部分,并比較它們的大。

        1.分別出示每一個圓,讓學生說出表示陰影部分的分數(shù).

       。1)把這個圓看做單位1,陰影部分占圓的幾分之幾?

       。2)同樣大的圓,陰影部分占圓的幾分之幾?

       。3)同樣大的圓,陰影部分用分數(shù)表示是多少?

        2.觀察比較陰影部分的大小:

       。1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等.)

       。2)陰影部分的大小相等,可以用等號連接起來.(把圖上陰影部分畫上等號)

        3.分析、推導出表示陰影部分的分數(shù)的大小也相等:

       。1)4幅圖中陰影部分的大小相等.那么,表示這4 幅圖的4個分數(shù)的大小怎么樣呢?

       。ㄟ@4個分數(shù)的大小也相等)

       。2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來).

        4.觀察、分析相等的分數(shù)之間有什么關系?

        (1)觀察 轉(zhuǎn)化成 , 的分子、分母發(fā)生了什么變化?

       。 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍.)

        (2)觀察

        (二)教學例2.

        出示例2:比較 的大。

        1.出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù).

        2.觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大。

        從數(shù)軸上可以看出:

        3.觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律.

        (1)這三個分數(shù)從形式上看不同,但是它們實質(zhì)上又都相等.

        (教師板書: )

       。2)你們分析一下, 、 各用什么樣的方法就都可以轉(zhuǎn)化成 了呢?

        三、抽象概括出分數(shù)的基本性質(zhì).

        1.觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?

        “分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變.”(板書)

        2.為什么要“零除外”?

        3.教師小結(jié):這就是今天這節(jié)課我們學習的內(nèi)容:“分數(shù)的基本性質(zhì)”

       。ò鍟骸盎拘再|(zhì)”)

        4.誰再說一遍什么叫分數(shù)的基本性質(zhì)?

        教師板書字母公式:

        四、應用分數(shù)基本性質(zhì)解決實際問題.

        1.請同學們回憶,分數(shù)的基本性質(zhì)和我們以前學過的哪一個知識相類似?

       。ê统ㄖ猩滩蛔兊.性質(zhì)相類似.)

       。1)商不變的性質(zhì)是什么?

       。ǔㄖ校怀龜(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變.)

       。2)應用商不變的性質(zhì)可以進行除法簡便運算,可以解決小數(shù)除法的運算.

        2.分數(shù)基本性質(zhì)的應用:

        我們學習分數(shù)的基本性質(zhì)目的是加深對分數(shù)的認識,更主要的是應用這一知識去解

        決一些有關分數(shù)的問題.

        3.教學例3.

        例3 把 和 化成分母是12而大小不變的分數(shù).

        板書:

        教師提問:

       。1) ?為什么?依據(jù)什么道理?

        ( ,因為分母2乘上6等于12,要使分數(shù)的大小不變,分子1也要乘上6.所以, )

        (2)這個“6”是怎么想出來的?

       。ㄟ@樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)

       。3) ?為什么?依據(jù)的什么道理?

       。 ,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以, )

       。4)這個“2”是怎么想出來的?

        (這樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是10÷2=5)

        五、課堂練習.

        1.把下面各分數(shù)化成分母是60,而大小不變的分數(shù).

        2.把下面的分數(shù)化成分子是1,而大小不變的分數(shù).

        3.在( )里填上適當?shù)臄?shù).

        4. 的分子增加2,要使分數(shù)的大小不變,分母應該增加幾?你是怎樣想的?

        5.請同學們想出與 相等的分數(shù).

        規(guī)律:這個分數(shù)的值是 ,然后只要按自然數(shù)的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數(shù)個.

        六、課堂總結(jié).

        今天這節(jié)課我們學習了什么知識?懂得了一個什么道理?分數(shù)的基本性質(zhì)是什么?這是學習分數(shù)四則運算的基礎,一定要掌握好.

        七、課后作業(yè).

        1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.

        2.在下面的括號里填上適當?shù)臄?shù).

      分數(shù)的基本性質(zhì)教案 篇7

        教學目標 :

        1、理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。

        2、理解和掌握分數(shù)的基本性質(zhì)。

        3、培養(yǎng)學生觀察、理解、獻魈驕考扒ㄒ頗芰Α?/SPAN>

        4、較好實現(xiàn)知識教育與思想教育的有效結(jié)合。

        教學重點 :理解和掌握分數(shù)的基本性質(zhì)。

        教學難點 :能熟練、靈活地運用分數(shù)的基本性質(zhì)。

        教具準備 :“分數(shù)基本性質(zhì)”課件,正方形紙片,彩色粉筆。

        教學過程:

        一、巧設伏筆、導入新課。

        1、出示課件:120÷30的商是多少?

        被除數(shù)和除都擴大3倍,商是多少?

        被除數(shù)和除數(shù)都縮小10倍呢?(出示后學生回答,課件顯示答案)

        2、在下面□里填上合適的數(shù)。

        1÷2=(1×5)÷(2×□)

        =(1÷□)÷(2÷4)

       、傧胍幌,你是根據(jù)什么填上面的數(shù)的?(生口答)

       。ㄕn件:商不變的性質(zhì))

        ②商不變的性質(zhì)是什么?(生口答)

       、鄢ㄅc分數(shù)之間有什么關系?

        生答,師板書:被除數(shù)÷除數(shù)=被除數(shù)/除數(shù)

        二、討論探究,學習新知。

        1、課件出示:1÷2= (怎么寫)

        ①1/2與( )相等?你能想出哪些數(shù)?有辦法怎么讓它們相等嗎?

        讓生合作探討。

       、谏鍪敬鸢福1/2=2/4=4/8……

        有選擇填入上數(shù)。

        2、引導學生證明它們相等。

       、俪稣n件:出示1個長方體,平均分成2份,得1/2,平均分成4份,得2/4……。

       。ㄕn件演示)

        上述演示讓學生感知后,問你發(fā)現(xiàn)了什么?(生討論)

       、谠倌嫦蛩伎,觀察板書和課件。

        問你又發(fā)現(xiàn)了什么?(生討論)

        得到:(板書)分數(shù)的分子和分母同時乘上或者除以相同的數(shù),分數(shù)的大小不變。

        3、驗證、補充、強調(diào)

       、俪鍪2/5=2×2/5=4/5,對嗎?(驗證分數(shù)的基本性質(zhì)),為什么?強調(diào)“同時”(在黑板板書上用彩筆勾劃強調(diào))。

       、诔鍪3/4=3×3/4×4=9/16,對嗎?為什么?強調(diào)“相同的'數(shù)”。

       、塾疫吜惺叫袉?為什么?3/4=3×0/4×0=?補充:(0除外)板書,并出示課件補充。

       、軞w納出上述板書為“分數(shù)的基本性質(zhì)”(課題)。

        4、信息反饋、糾正、鞏固。

       、倥袛啵ǔ鍪菊n件)

        A、分數(shù)的分子,分母都乘上或除以相同的數(shù),分數(shù)的大小不變。

        B、把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。

        C、3/4的分子乘上3,分母除以3,分數(shù)的大小不變。

        D、10/24=10÷2/24÷2=10×3/24×3 ( )

        完成后,強調(diào)重點,加以鞏固。

        ②完成課本108頁例2(學生嘗試練習)

        強調(diào)運用了什么性質(zhì)?課件:“分數(shù)的基本性質(zhì)”醒目強調(diào)。

        三、實踐練習,信息綜合

        1、練一練

       、3/5=3×( )/5×( )=9/( )

       、7/8=( )/48

       、4÷18=( )/( )=4×5/18×( )=2/( )

        2、練習二十二1—3題。

        四、課堂總結(jié)、整體感知。

       。ㄔ谛畔⒕C合后,重點選擇性小結(jié),形成整體),這節(jié)課我們學習了什么內(nèi)容?可以應用在什么地方?這與我們學習過的什么性質(zhì)有聯(lián)系?

        五、發(fā)散鞏固、自主選擇。

        想一想:(選擇一道你喜歡的題做)

        課件:①與1/2相等的分數(shù)有多少個?想象一下,把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)。

       、9/24和20/32哪能一個數(shù)大一些,你能講出判斷的依據(jù)嗎

      分數(shù)的基本性質(zhì)教案 篇8

        教學目標

        1、進一步理解分數(shù)基本性質(zhì)的意義,掌握約分的方法。

        2、促進學生初步形成約分的一般技能技巧,約分(約成最簡分數(shù))的正確率90%。

        教學重難點約成最簡分數(shù)

        教學準備:分數(shù)卡片口算卡片

        教學過程

        一、自主回顧

        回顧一下對約分的理解情況

        突出三點:用分子分母的'公因數(shù)同時去除;約分的形式;約成最簡分數(shù)。

        師:什么是最簡分數(shù)?

        說一說。

        二、鞏固練習

        師分數(shù)卡片判斷

        1、找朋友:找出和相等的分數(shù)。(七個小矮人身上的分數(shù)分別是下列分數(shù))

        你是怎樣尋到的?說說自己的理由好么?

        2、能用不同的分數(shù)表示下面各題的商嗎?

        練習十一第8題

        師:我們在剛剛學習分數(shù)和除法的關系時,只會用表示2÷8,現(xiàn)在我們還可以用來表示?,我們的進步啊,這就是學習的魅力。

        師:你能寫出不同的除法算式嗎?

       。剑ǎ拢ǎ剑ǎ拢ǎ

        你能說出幾個除法的算式?

        這些算式之間有什么聯(lián)系?

        3、快樂學習超市

        超市畫面快樂套餐1快樂套餐2

        快樂套餐1:比一比○○0.4

        計算并化簡+=-=

        在()填上最簡分數(shù)20分=()時

        快樂套餐2、3同上。

       。ǚ纸M練習小組代表匯報整合了練習十一10至14題)

        4、集中練習

        把0.5化成分數(shù)問問自己這個分數(shù)是最簡分數(shù)嗎?你會把它化成最簡分數(shù)嗎?

        分母是10的最簡分數(shù)有幾個?

        請你提出一個類似的問題。

        課堂作業(yè)

        練習十一第9題,12、13、14題各自選2個

        課后練習:完成練習冊上的相應練習。

      分數(shù)的基本性質(zhì)教案 篇9

        這節(jié)課,戴老師教師教態(tài)自然、語言清晰、數(shù)學語言表述準確。著重培養(yǎng)了學生通過動手操作的活動來讓學生主動探究分數(shù)的基本性質(zhì),掌握分數(shù)的基本性質(zhì)在生活中的實際應用,同時培養(yǎng)了學生積極參與,團結(jié)合作,主動探索,引導觀察鈫捬罷夜媛桑發(fā)現(xiàn)規(guī)律,我覺得這是一堂充滿生命活力的課堂,能促進學生全面發(fā)展的課堂,體現(xiàn)新課標理念的課堂,從中我得到了一些鮮活的經(jīng)驗和有益的啟示。具體概括以下幾點?

        一、教學思路清晰,目標明確,重難點突出。

        教師根據(jù)教學內(nèi)容,因材施教地制定了教學思路。這節(jié)課以鈥湸瓷棖榫車既胄驢沃傅嘉探索,整個教學思路清晰。這節(jié)課戴老師突出培養(yǎng)學生動手操作,主動探究的訓練,通過用三張同樣大的長形紙折一張的、涂色等活動來探索分數(shù)分子、分母的變化規(guī)律,從而讓學生發(fā)現(xiàn)規(guī)律,突出重難點的.內(nèi)容,整個教學做到詳略得當,重難點把握準確。這樣設計符合學生年齡特點和認知規(guī)律,體現(xiàn)了以學生為主體的學習過程,培養(yǎng)了學生的學習能力?

        二、創(chuàng)設情境,重視操作活動,發(fā)揮主體作用。

        老師能創(chuàng)造機會,讓學生各種感官參與學習,把學生推到主體地位。讓學生獲得豐富感性認識,使抽象知識具體化、形象化。引導學生比較觀察三幅圖的異同之處,分數(shù)的分子分母的變化過程,從而證實變化的規(guī)律,整個操作過程層次分明,通過折涂,學生動手、動腦、動口,人人參與學習過程,不是操作而操作,而是把操作,理解概念,讓學生觀察三個圖形來說明概念,降低了難度。通過操作,讓學生既學得高興又充分理解知識。形象直觀地推導了分數(shù)的基本性質(zhì)的概念,這樣概念形成過程十分清晰,充分培養(yǎng)了學生自主探索的能力,把被動地接受知識變?yōu)橹鲃拥孬@取知識,達到教學目的。

        三、練習設計具有層次性,開放性。

        由淺入深由易到難的設計,既使學生牢固的掌握了所學的知識,鞏固了本節(jié)課的基礎知識,又訓練了學生的思維。激發(fā)了學生的學習興趣。

      分數(shù)的基本性質(zhì)教案 篇10

        一、 教材

        根據(jù)課程標準的要求,基于對教學內(nèi)容的把握,本課時我確定的教學目標為:

        1.理解和掌握分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

        2.通過猜想、驗證、歸納、總結(jié)等活動,經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學思想。

        3.在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣。我確定本目標的依據(jù)有三點:

        一是基于對課程標準的理解。

        《義務教育數(shù)學課程標準(20xx年版)》在學段目標的第二學段指出學生要“在觀察、實驗、猜想、驗證等活動中,發(fā)展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的思考過程”。

        二是基于對教材的認識。

        《分數(shù)的基本性質(zhì)》是在學生學習了分數(shù)的意義、分數(shù)與除法的關系、商不變性質(zhì)等知識的基礎上進行教學的,它是以后學習約分、通分的依據(jù),而約分和通分則是分數(shù)四則混合運算的重要基礎,因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。

        三是基于對學情的認識。

        作為舊課新上,如何讓學生在重新學習的過程中對學習活動任然保持濃厚興趣,從探究活動中得到新的發(fā)展,上出數(shù)學味,上出新意,我在思考。本節(jié)課常規(guī)的是創(chuàng)設情境,在情景中提煉出等式,最終形成性質(zhì)。因此在教學時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結(jié)論,從等式的驗證上升到規(guī)律的發(fā)現(xiàn)和歸納,經(jīng)歷定律由特殊到一般的歸納推理過程,在這個過程中積累數(shù)學經(jīng)驗、滲透數(shù)學思想、掌握數(shù)學方法。

        據(jù)此,

        我將教學重點確定為:通過猜想、驗證、歸納、總結(jié)等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程。教學難點確定:理解和掌握分數(shù)的基本性質(zhì)。

        二、教法

        課程標準指出教師要關注已有的知識經(jīng)驗及認知水平,發(fā)揮組織者、引導者、合作者的作用。本節(jié)課我綜合采用了引導發(fā)現(xiàn)法、啟發(fā)式教學法,直觀演示法,組織學生經(jīng)歷實驗、猜測、驗證、得出結(jié)論的過程。

        三、說學法

        學生是學習的'主體,學生的學習活動應該是生動的、活潑的、富有個性的,因此,在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法,引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。

        四、說教學過程

        本著讓學生

        “主動參與、樂于探究、學有所得”的理念,結(jié)合五年級學生的認知水平和年齡特點,結(jié)合教材的編排意圖和學情特點,我設計了如下教學環(huán)節(jié):1. 聯(lián)系舊知,質(zhì)疑引思。 2.自主操作,驗證猜想 3.知識應用,鞏固提高4.回顧總結(jié),完善認知。

        環(huán)節(jié)一:聯(lián)系舊知,質(zhì)疑引思。

        “疑是思之始,學之端!彼伎歼@樣一連串的問題,目的是喚醒學生已有的知識經(jīng)驗;迅速地點燃孩子們求知欲望;引發(fā)學生的數(shù)學思考,為主動探究新知識積聚動力。

        環(huán)節(jié)二:操作體驗,概括規(guī)律

        1.觀察發(fā)現(xiàn),提出猜想。

        通過找與1/2相等的分數(shù),思考證明方法,觀察等式,發(fā)現(xiàn)規(guī)律,于是提出猜想

        2.舉例操作,驗證猜想。

        課標指出“學生應當有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節(jié)課驗證環(huán)節(jié),將“分子分母怎樣變才使得分數(shù)的大小不變”設定為研究的關鍵點,然后圍繞這一關鍵點讓學生展開了操作、感悟、分析、推理等一系列的數(shù)學活動,引導學生通過比較全面的大量的例子來驗證結(jié)論,在觀察、實驗、猜測、驗證的活動中發(fā)展合情推理能力。讓學生試著用數(shù)學的思維去思考,體驗如何運用新舊知識間的聯(lián)系和遷移去分析和解決問題,培養(yǎng)學生好學善思的良好品質(zhì)。

        3.概括性質(zhì),深化理解

        通過觀察算式,經(jīng)歷由特殊到一般的歸納推理,發(fā)現(xiàn)分數(shù)的基本性質(zhì)。

        4.運用規(guī)律,完成例2

        嘗試運用發(fā)現(xiàn)的規(guī)律,解決問題。

        環(huán)節(jié)三:知識應用,鞏固提高

        在有層次的練習過程中,形成技能,發(fā)展學生的智力,達成本節(jié)課的教學目標,突出重點,突破難點。本節(jié)課,我設計了兩個層次的練習。一是點對點的基礎練習,二是靈活運用所學知識解決生活中實際問題。

        環(huán)節(jié)四:回顧總結(jié),完善認知

        通過回顧,梳理所學的知識,提煉數(shù)學方法,聯(lián)系新舊知識,使學生的認知結(jié)構(gòu)得到補充和完善。

        有人說的好,教育是一門永無止境的藝術,我知道這節(jié)課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。

      【分數(shù)的基本性質(zhì)教案】相關文章:

      分數(shù)的基本性質(zhì)的教案02-26

      分數(shù)的基本性質(zhì)教案10-21

      分數(shù)的基本性質(zhì)教案九篇07-13

      分數(shù)的基本性質(zhì)教案六篇07-29

      分數(shù)的基本性質(zhì)教案八篇08-05

      分數(shù)的基本性質(zhì)教案15篇01-20

      分數(shù)的基本性質(zhì)教案(15篇)01-20

      分數(shù)的基本性質(zhì)教案(精選5篇)03-08

      分數(shù)的基本性質(zhì)說課稿12-08

      【精品】分數(shù)的基本性質(zhì)教案3篇10-31

      Copyright©2013-2024duanmeiwen.com版權(quán)所有