亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 最新六年級數(shù)學抽屜原理教學設計

      時間:2024-02-10 10:08:50 教學資源 投訴 投稿
      • 相關(guān)推薦

      最新六年級數(shù)學抽屜原理教學設計

        在教學工作者實際的教學活動中,總不可避免地需要編寫教學設計,借助教學設計可以更大幅度地提高學生各方面的能力,從而使學生獲得良好的發(fā)展。那要怎么寫好教學設計呢?以下是小編為大家整理的最新六年級數(shù)學抽屜原理教學設計,僅供參考,大家一起來看看吧。

      最新六年級數(shù)學抽屜原理教學設計

      最新六年級數(shù)學抽屜原理教學設計1

        教學目標:

        1、使學生經(jīng)歷將一些實際問題抽象為代數(shù)問題的過程,并能運用所學知識解決有關(guān)實際問題。

        2、能與他人交流思維過程和結(jié)果,并學會有條理地、清晰地闡述自己的觀點。

        教學重點:分配方法。

        教學難點:分配方法。

        教學方法:列舉法 分析法

        學習方法:嘗試法 自主探究法

        教學用具:課件

        教學過程:

        一、 定向?qū)W(3分)

       。ㄒ唬┯螒蛞

        師:同學們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準備了3把椅子,請4個同學上來,誰愿來?

        1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

        2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?

        游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。

        引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。

       。ǘ┙沂灸繕

        理解并掌握解決鴿巢問題的解答方法。

        二、 自主學習(8分)

        1、看書68頁,閱讀例1:把4枝鉛筆放進3個文具盒中,可以怎么放?有幾種情況?

        (1)理解“總有”和“至少”的意思。

        (2)理解4種放法。

        2、全班同學交流思維的過程和結(jié)果。

        3、跟蹤練習。

        68頁做一做:5只鴿子飛回3個鴿舍,至少有2只鴿子要飛進同一個鴿舍里。為什么?

       。1)說出想法。

        如果每個鴿舍只飛進1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進其中的一個鴿舍或分別飛進其中的兩個鴿舍。所以至少有2只鴿子飛進同一個鴿舍。

       。2)嘗試分析有幾種情況。

       。3)說一說你有什么體會。

        三、合作交流(8分)

        1、出示例2

        把7本書放進3個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?

        (1)合作交流有幾種放法。

        不難得出,總有一個抽屜至少放進3本。

       。2)指名說一說思維過程。

        如果每個抽屜放2本,放了6本書。剩下的1本還要放進其中一個抽屜,所以至少有1個抽屜放進3本書。

        2、如果一共有8本書會怎樣呢10本呢?

        3、你能用算式表示以上過程嗎?你有什么發(fā)現(xiàn)?

        7÷3=2……1 (至少放3本)

        8÷3=2……2 (至少放4本)

        10÷3=3……1 (至少放5本)

        4、做一做

        11只鴿子飛回4個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?

        四、質(zhì)疑探究(5分)

        1、鴿巢問題怎樣求?

        小結(jié):先平均分配,再把余數(shù)進行分配,得出的就是一個抽屜至少放進的本數(shù)。

        2、做一做。

        69頁做一做2題。

        五、小結(jié)檢測(10)

        (一)小結(jié)

        鴿巢問題的解答方法是什么?

        物體的數(shù)量大于抽屜的數(shù)量,總有一個抽屜里至少放進(商+1)個物體。

        (二)檢測

        1、填空

       。1)7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。

       。2)有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。

       。3)四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的`。

        (4)任意給出3個不同的自然數(shù),其中一定有2個數(shù)的和是( )數(shù)。

        2、選擇

        (1)5個人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。 a、60 b、61 c、62 d、59

        (2)3種商品的總價是13元,每種商品的價格都是整數(shù),至少有一種商品的價格不低于( )元。 a、3 b、4 c、5 d、無法確定

        3、幼兒園老師準備把15本圖畫書分給14個小朋友,結(jié)果是什么?

        六、作業(yè) (6分)

        完成課本練習十二第2、4題。

        板書

        抽屜原理

        物體的數(shù)量大于抽屜的數(shù)量,總有一個抽屜至少放進(商+1)物體。

      最新六年級數(shù)學抽屜原理教學設計2

        教學目標:

        1.知識與能力目標:

        經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學活動,建立數(shù)學模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷搿

        2.過程與方法目標:

        經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。

        3.情感、態(tài)度與價值觀目標:

        通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。

        教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

        教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

        教學準備:教具:5個杯子,6根小棒;學具:每組5個杯子,6根小棒。

        教學過程:

        一、游戲激趣,初步體驗。

        師:同學們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學上來各抽一張,我們來驗證一下。如果再請五位同學來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊藏著一個非常有趣的數(shù)學原理,想不想研究?

        二、操作探究,發(fā)現(xiàn)規(guī)律。

       。ㄒ唬┙(jīng)歷“抽屜原理”的探究過程,理解原理。

        1.研究小棒數(shù)比杯子數(shù)多1的情況。

        師:今天這節(jié)課我們就用小棒和杯子來研究。板書:小棒杯子

        師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?

        學生分組操作,并把操作的結(jié)果記錄下來。

        請一個小組匯報操作過程,教師在黑板上記錄。

        師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。

        師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?

        學生分組操作,并把操作的結(jié)果記錄下來。

        請一個小組代表匯報操作過程,教師在黑板上記錄。

        師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?

        師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結(jié)果?

        師:怎樣驗證猜測的結(jié)果對不對,你又什么好方法?引導學生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1

        師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?

        師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結(jié)果呢?

        2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。

        師:如果把5根小棒放在3個杯子里,會有什么結(jié)果?

        引導:先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?

        師:把7根小棒放在3個杯子里,會有什么結(jié)果呢?為什么?

        3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。

        師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結(jié)果?

        小組內(nèi)討論,再請同學說結(jié)果和理由。

        4、總結(jié)規(guī)律。

        師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?

        總結(jié):把m個物體放在n個抽屜里(m>n),總有一個抽屜至少有“商+1”個物體。

        5、介紹抽屜原理。

        “抽屜原理”又稱“鴿巢原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應用!俺閷显怼钡膽檬乔ё?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

        三、應用“抽屜原理”,感受數(shù)學的魅力。

        1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?為什么?

        先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。

        2、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?

        3、向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?

       。1)六年級里至少有兩人的生日是同一天。

        (2)六(2)班中至少有5人是同一個月出生的'。

        4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?

        5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學的抽屜原理來解釋嗎?

        四、全課小結(jié)。

        說一說:今天這節(jié)課,我們又學習了什么新知識?(師生共同對本節(jié)課的內(nèi)容進行小結(jié))

        五、布置作業(yè)。

        課本73頁練習十二第2、4題。

        六、板書設計。

        數(shù)學廣角——抽屜原理

        物體數(shù)÷抽屜數(shù)=商……余數(shù)至少數(shù)=商+1

        小棒杯子總有一個杯子里至少有

        322

        432

        6÷5=1……12

        5÷3=1……22

        7÷4=1……32

        9÷4=2……13

        15÷4=3……34

        教學反思:

        1、通過游戲,激發(fā)興趣。

        興趣是最好的老師。課前我設計了從52張撲克牌(去掉2張王牌)中任意抽取5張,老師肯定地說:至少有2張牌是同一花色的,在學生半信半疑時,師生共同游戲,讓學生信服,但又不知道其中奧妙,這樣導入,學生興趣盎然。

        2、操作探究,建立模型。

        本節(jié)課充分放手,讓學生自主思考,采用自己的方法“證明”:“把4根小棒放入3個杯子里,不管怎么放,總有一個杯子里至少有2根小棒”,然后交流展示,為后面開展教與學的活動做了鋪墊。此處設計注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調(diào)動所有的學生積極性。在有趣的類推活動中,引導學生得出一般性的結(jié)論,讓學生體驗和理解“抽屜原理”的最基本原理,當物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學過程,從方法層面和知識層面上對學生進行了提升,有助于發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。在評價學生各種“證明”方法,針對學生的不同方法教師給予針對性的鼓勵和指導,讓學生在自主探索中體驗成功,獲得發(fā)展。在學生自主探索的基礎上,進一步比較優(yōu)化,讓學生逐步學會運用一般性的數(shù)學方法來思考問題。在這一環(huán)節(jié)的教學中抓住了假設法最核心的思路就是用“有余數(shù)除法”形式表示出來,使學生借助直觀,很好的理解了如果把物體盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少,余下的不管放到哪個抽屜里,總有一個抽屜里比平均分得的數(shù)量多1。特別是對“某個抽屜至少有的數(shù)量”是除法算式中的商加“1”,而不是商加“余數(shù)”,教師適時挑出針對性問題進行交流、討論,使學生從本質(zhì)上理解了“抽屜原理”。

        3、解釋應用,深化知識。

        學了“抽屜原理”有什么用?能解決生活中的什么問題,這就要求在教學中要注重聯(lián)系學生的生活實際。在應用“抽屜原理”,感受數(shù)學的魅力環(huán)節(jié)里,我設計了一組簡單、真實的生活情境,讓學生用學過的知識來解釋這些現(xiàn)象,有效的將學生的自主探究學習延伸到課外,體現(xiàn)了“數(shù)學來源于生活,又還原于生活”的理念。

        教學永遠是一門遺憾的藝術(shù)。

        反思本節(jié)課的教學,有以下幾點不足:

        1、在把3根小棒放進2個杯子,把4根小棒放進3個杯子里,都讓學生進行了操作并做了記錄,但對學生的有序思考重視不夠,導致課堂檢測時,學生用列舉法解決問題的時候,有兩個同學把所有的可能都列舉對了,但不是有序排列的。還有兩個差一點的學生由于思維無序,因此沒能正確列舉出來。

        2、在把5根小棒放在3個杯子里,有學生出現(xiàn)了總有一個杯子里至少有3根小棒的結(jié)論,可能是用5÷3=1……2,1+2=3,也就是很多同學容易出的錯誤:用商+余數(shù)。這時老師沒有抓住這個同學思維中的錯誤制造思維矛盾,因此感覺學生對總有一個抽屜至少有的數(shù)量=商+1這一知識點的理解還不夠透徹。

        3學生在用“抽屜原理”解決實際問題時,書寫格式教師指導不到位。有些題目是要先說結(jié)論,再說理由。那么說理由的時候,有的同學只列了算式,如:5÷3=1……2,1+1=2,還有的同學先列算式,再回答問題。在區(qū)教研室周俊主任的指導下,我才明白這類題目的書寫格式是:因為5÷3=1(根)……2(根),1+1=2(根),所以每個杯子里至少有2根小棒。

        總的說來,本節(jié)課學生的學習效果還不錯,全班學生針對這類問題都能快速做出正確分析與判斷。我也算圓滿完成了這節(jié)課的學習目標,實現(xiàn)了三維目標的有機整合。

      最新六年級數(shù)學抽屜原理教學設計3

        教學目標:

        1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

        2、通過操作發(fā)展學生的類推能力,形成比較抽象的`數(shù)學思維。

        3、通過“抽屜原理”的靈活應用感受數(shù)學的魅力。

        教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

        教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

        教學過程

        一、 游戲引入

        3個人坐兩個座位,3人都要坐下,一定有一個座位上至少坐了2個人。

        這其中蘊含了有趣的數(shù)學原理,這節(jié)課我們一起學習研究。

        二、新知探究

        1、把4枝鉛筆放進3個文具盒里,不管怎么放,總有一個文具盒里至少放進()枝鉛筆先猜一猜,再動手放一放,看看有哪些不同方法。用自己的方法記錄(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么發(fā)現(xiàn)?

        不管怎么放總有一個文具盒里至少放進2枝鉛筆。總有是什么意思?至少是什么意思2、思考

        有沒有一種方法不用擺放就可以知道至少數(shù)是多少呢?

        1、3人坐2個位子,總有一個座位上至少坐了2個人2、4枝鉛筆放進3個文具盒中,總有一個文具盒中至少放了2枝鉛筆5枝鉛筆放進4個文具盒中,6枝鉛筆放進5個文具盒中。

        99支鉛筆放進98個文具盒中。

        是否都有一個文具盒中

        至少放進2枝鉛筆呢?

        這是為什么?可以用算式表達嗎?

        4、如果是5枝鉛筆放到3個文具盒里,總有一個文具盒至少放進幾枝鉛筆?把7支筆放進2個文具盒里呢?

        8枝筆放進2個文具盒呢?

        9枝筆放進3個文具盒呢?至少數(shù)=上+余數(shù)嗎?

        三、小試牛刀

        1、7只鴿子飛回5個鴿舍,至少有幾只鴿子要飛進同一個鴿舍里?2、從撲克牌中取出兩張王牌,在剩下的52張中任意抽出5張,至少有幾張是同花色的?四、數(shù)學小知識

        數(shù)學小知識:抽屜原理的由來最先發(fā)現(xiàn)這些規(guī)律的人是誰呢?最先是由19世紀的德國數(shù)學家狄里克雷運用于解決數(shù)學問題的,后人們?yōu)榱思o念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個規(guī)律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鴿巢原理”,還把它叫做“抽屜原理”。五、智慧城堡

        1、把13只小兔子關(guān)在5個籠子里,至少有多少只兔子要關(guān)在同一個籠子里?2、咱們班共59人,至少有幾人是同一屬相?3、張叔叔參加飛鏢比賽,投了5鏢,鏢鏢都中,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?4、六年級四個班的學生去春游,自由活時有6個同學在一起,可以肯定。

        為什么?六、小結(jié)

        這節(jié)課你有什么收獲?

        七、作業(yè):課后練習

      最新六年級數(shù)學抽屜原理教學設計4

        【教學內(nèi)容】

        《義務教育課程標準實驗教科書·數(shù)學》六年級下冊。

        【教材分析】

        讓學生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實際問題,初步感受數(shù)學的魅力。主要培養(yǎng)學生的思考和推理能力,讓學生初步經(jīng)歷“數(shù)學原理”的過程,提高學生數(shù)學應用意識。

        【學情分析】

        教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學生在操作實物的過程中可以發(fā)現(xiàn)一個現(xiàn)象:不管怎么放,總有一個文具盒里至少放進2枝鉛筆,從而產(chǎn)生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。

        【教學目標】

        1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

        2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。

        3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。

        【教學重點】

        經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

        【教學難點】

        理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

        【教具、學具準備】

        每組都有3個文具盒和4枝鉛筆。

        【教學過程】

        一、談話導入

        教師:同學們,你們在電腦上玩過“電腦算命”嗎?“電腦算命”看起來很深奧,只要報出你的出生的年、月、日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運、財運等。通過今天的學習,我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非?尚突奶频,是不能信的鬼把戲。

        板書:抽屜原理

        教師:通過學習,你想解決那些問題?

        根據(jù)學生回答,教師把學生提出的問題歸結(jié)為:“抽屜原理”是怎樣的?這里的“抽屜”是指什么?運用“抽屜原理”能解決那些問題?怎樣運用“抽屜原理”解決實際問題?

        二、通過操作,探究新知

        (一)認識“抽屜原理”

        出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進2個盒子里,怎么放?有幾種不同的放法?

        師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況(3,0)(2,1)

        【點評】此處設計教師注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調(diào)動所有的學生積極參與進來。)

        師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。3支筆放進2個盒子里呢?

        生:不管怎么放,總有一個盒子里至少有2枝筆?

        師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。

        師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)

        師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況。

       。4,0,0)(3,1,0) (2,2,0)(2,1,1),師:還有不同的放法嗎?

        生:沒有了。

        師:你能發(fā)現(xiàn)什么?

        生:不管怎么放,總有一個盒子里至少有2枝鉛筆。

        師:“總有”是什么意思?

        生:一定有

        師:“至少”有2枝什么意思?

        生:不少于兩只,可能是2枝,也可能是多于2枝?

        師:就是不能少于2枝。(通過操作讓學生充分體驗感受)

        師:把3枝筆放進2個盒子里,和把4枝筆飯放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結(jié)論呢?

        學生思考——組內(nèi)交流——匯報

        師:哪一組同學能把你們的想法匯報一下?

        組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。

        師:你能結(jié)合操作給大家演示一遍嗎?(學生操作演示)

        師:同學們自己說說看,同位之間邊演示邊說一說好嗎?

        師:這種分法,實際就是先怎么分的?

        生眾:平均分

        師:為什么要先平均分?(組織學生討論)

        生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。

        生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?

        師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結(jié)合操作,說一說)

        師:哪位同學能把你的想法匯報一下,生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

        師:把6枝筆放進5個盒子里呢?還用擺嗎?

        生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

        師:把7枝筆放進6個盒子里呢?

        把8枝筆放進7個盒子里呢?

        把9枝筆放進8個盒子里呢?……

        你發(fā)現(xiàn)什么?

        生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。

        師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

        【點評】教師關(guān)注了“抽屜原理”的最基本原理,物體個數(shù)必須要多于抽屜個數(shù),化繁為簡,此處確實有必要提領(lǐng)出來進行教學。在學生自主探索的基礎上,教師注意引導學生得出一般性的結(jié)論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發(fā)展了學生的類推能力,形成比較抽象的數(shù)學思維。

       。ǘ┨骄啃轮

        1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

        把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

        把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

       。艚o學生思考的空間,師巡視了解各種情況)

        2.學生匯報。

        生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

        板書:5本2個2本……余1本(總有一個抽屜里至有3本書)

        7本2個3本……余1本(總有一個抽屜里至有4本書)

        9本2個4本……余1本(總有一個抽屜里至有5本書)

        師:2本、3本、4本是怎么得到的`?生答完成除法算式。

        5÷2=2本……1本(商加1)

        7÷2=3本……1本(商加1)

        9÷2=4本……1本(商加1)

        師:觀察板書你能發(fā)現(xiàn)什么?

        生1:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。

        師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

        生:“總有一個抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

        生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。

        師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?在小組里進行研究、討論。

        交流、說理活動:

        生1:我們組通過討論并且實際分了分,結(jié)論是總有一個抽屜里至少有2本書,不是3本書。

        生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結(jié)論是“總有一個抽屜里至少有2本書”。

        生3我們組的結(jié)論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。

        師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?

        生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。

        師:同學們同意吧?

        師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用!俺閷显怼钡膽檬乔ё?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應用這一原理解決問題。

        3.解決問題。71頁第3題。(獨立完成,交流反饋)

        小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。

        【點評】在這一環(huán)節(jié)的教學中教師抓住了假設法最核心的思路就是用“有余數(shù)除法”形式表示出來,使學生學生借助直觀,很好的理解了如果把書盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少本書,余下的書不管放到哪個抽屜里,總有一個抽屜里比平均分得的書的本數(shù)多1本。特別是對“某個抽屜至少有書的本數(shù)”是除法算式中的商加“1”,而不是商加“余數(shù)”,教師適時挑出針對性問題進行交流、討論,使學生從本質(zhì)上理解了“抽屜原理”。

        三、應用原理解決問題

        師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?

        生:2張/因為5÷4=1…1

        師:先驗證一下你們的猜測:舉牌驗證。

        師:如有3張同花色的,符合你們的猜測嗎?

        師:如果9個人每一個人抽一張呢?

        生:至少有3張牌是同一花色,因為9÷4=2…1

        四、全課小結(jié)

        上面我們所證明的數(shù)學原理就是最簡單的“抽屜原理”,可以概括為:把m個物體任意放到m-1個抽屜里,那么總有一個抽屜中放進了至少2個物體。

        五、思維訓練

        1.從街上隨便找來13人,就可以斷定他們中至少有兩個人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。

        2.任意367名學生中,一定存在兩名學生,他們在同一天過生日。說明理由。

        【教學反思】

        1、小組活動很容易抓住學生的注意力,讓學生覺得這節(jié)課要探究的問題即好玩又有意義。

        2、理解“抽屜原理”對于學生來說有著一定的難度。

        3、部分學生很難判斷誰是物體,誰是抽屜。

      【最新六年級數(shù)學抽屜原理教學設計】相關(guān)文章:

      抽屜原理教學設計10-07

      抽屜原理教學設計范文(通用5篇)10-06

      抽屜原理教學反思(精選12篇)06-17

      抽屜原理教學反思(精選8篇)10-06

      抽屜原理的教學反思(通用3篇)10-06

      抽屜原理教學反思(通用3篇)10-07

      數(shù)學廣角《抽屜原理》教后反思范文10-06

      《抽屜原理》的教后反思10-06

      抽屜原理優(yōu)秀的教學反思(通用5篇)10-05

      阿基米德的原理教學設計10-07