[推薦]《勾股定理》教學(xué)設(shè)計5篇
作為一位杰出的老師,時常要開展教學(xué)設(shè)計的準備工作,借助教學(xué)設(shè)計可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。教學(xué)設(shè)計要怎么寫呢?下面是小編收集整理的《勾股定理》教學(xué)設(shè)計,歡迎大家分享。
《勾股定理》教學(xué)設(shè)計1
一、教材分析
勾股定理是直角三角形的一條非常重要的性質(zhì),也是幾何中最重要的定理之一,它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,主要用于解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”是這本書所體現(xiàn)的主要思想,教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。
二、學(xué)習(xí)目標與任務(wù)
1、學(xué)習(xí)目標描述(知識與技能、過程與方法、情感態(tài)度與價值觀)
。1)知識與技能目標:理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
。2)過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
。3)情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
2、學(xué)習(xí)內(nèi)容與學(xué)習(xí)任務(wù)說明(學(xué)習(xí)內(nèi)容的選擇、學(xué)習(xí)形式的確定、學(xué)習(xí)結(jié)果的描述、學(xué)習(xí)重點及難點的分析)
學(xué)習(xí)內(nèi)容:勾股定理的證明和運用
學(xué)習(xí)形式:課堂教學(xué),小組合作
學(xué)習(xí)結(jié)果:學(xué)生能夠掌握勾股定理的證明并熟練運用勾股定理解決相關(guān)問題
學(xué)習(xí)難點:用面積法方法證明勾股定理。
學(xué)習(xí)重點:引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
3、問題設(shè)計(能激發(fā)學(xué)生在教學(xué)活動中思考所學(xué)內(nèi)容的問題)
。1)圖中三個三角形有什么關(guān)系?
。2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
三、學(xué)習(xí)者特征分析(說明學(xué)生的.學(xué)習(xí)特點、學(xué)習(xí)習(xí)慣、學(xué)習(xí)交往特點等)
。1)學(xué)習(xí)特點:易受外界影響﹑情緒情感偏激﹑情緒兩極波動﹑憑感情行事,但同時又具有可塑性大﹑主動嘗試的特點,八年級的學(xué)生是成長發(fā)展的轉(zhuǎn)折點,也是教育的關(guān)鍵期。
。2)學(xué)習(xí)習(xí)慣:八年級是初中生活開始分化的時期,經(jīng)過一年多新課程理念的熏陶和實踐,學(xué)生已經(jīng)有了初步自主學(xué)習(xí)和合作探究的能力。
。3)學(xué)習(xí)交往特點:經(jīng)過一年的學(xué)習(xí)生活,環(huán)境熟悉了,人也熟悉了,但部分同學(xué)還是羞于表現(xiàn)但又渴望得到肯定。
四、學(xué)習(xí)環(huán)境選擇與學(xué)習(xí)資源設(shè)計
1、學(xué)習(xí)環(huán)境選擇(打√)
校園網(wǎng)√
因特網(wǎng)
手機
2、學(xué)習(xí)資源類型(打√)
(1)課件√
。2)工具
。3)專題學(xué)習(xí)網(wǎng)站
。4)多媒體資源庫
(5)案例庫
。6)題庫
。7)網(wǎng)絡(luò)課程
。8)寧夏教育云平臺
(9)其他
3、學(xué)習(xí)資源內(nèi)容簡要說明(說明名稱、網(wǎng)址、主要內(nèi)容)
五、學(xué)習(xí)情境創(chuàng)設(shè)
1、學(xué)習(xí)情境類型(打√)
。1)真實情境√
(2)問題性情境√
。3)虛擬情境
(4)其他
2、學(xué)習(xí)情境設(shè)計
通過真實的教學(xué)情境,讓學(xué)生能夠真實感受課堂氛圍,通過提問,來激發(fā)學(xué)生的思考和想象,引導(dǎo)學(xué)生對新課程內(nèi)容進行探究,加深學(xué)生的理解和記憶。
六、學(xué)習(xí)活動組織
1、自主學(xué)習(xí)設(shè)計
類型
相應(yīng)內(nèi)容
使用資源
學(xué)生活動
教師活動
自主觀察
圖片
課件
觀察圖片
播放圖片
自主探究
回答問題
課件
討論并回答啊問題
提出問題
2、協(xié)作學(xué)習(xí)設(shè)計
類型
相應(yīng)內(nèi)容
使用資源
學(xué)生活動
教師活動
。1)伙伴
小組討論
課件
討論探究
提出問題并引導(dǎo)
。2)協(xié)同
。3)辯論
(4)角色扮演
。5)其他
3、教學(xué)結(jié)構(gòu)流程的設(shè)計
通過圖片導(dǎo)入課程——提出問題引入勾股定理新內(nèi)容——問題解決進入新課——通過例子驗證勾股定理——得出勾股定理——通過習(xí)題鞏固所學(xué)——對課堂進行小結(jié)——布置課后作業(yè)進一步加強鞏固
七、教學(xué)過程
教學(xué)環(huán)節(jié)
教師活動
學(xué)生活動
設(shè)計意圖
情景導(dǎo)入
播放圖片
觀察圖片欣賞數(shù)學(xué)的美
讓學(xué)生感受勾股定理的文化之美
學(xué)習(xí)新課
講解勾股定理
認真聽老師講解
讓學(xué)生學(xué)會勾股定理的證明和運用
鞏固練習(xí)
提出問題
根據(jù)所學(xué)解決問題
讓學(xué)生熟練運用勾股定理
小結(jié)
總結(jié)本節(jié)課所學(xué)內(nèi)容,提問
根據(jù)老師的提問回答問題
讓學(xué)生鞏固本節(jié)課所學(xué)的知識
作業(yè)
布置作業(yè)
記錄作業(yè)并認真完成
讓學(xué)生通過練習(xí)對本節(jié)課內(nèi)容更加熟悉
八、學(xué)習(xí)評價設(shè)計
1、測試形式與工具(打√)
。1)課堂提問√
。2)書面練習(xí)√
(3)達標測試
。4)學(xué)生自主網(wǎng)上測試
。5)合作完成作品
(6)其他
2、測試內(nèi)容
課堂練習(xí)
課后作業(yè)
九、板書設(shè)計
勾股定理
證明:
設(shè)等腰直角三角形的直角邊長為a,斜邊長為b
藍色部分面積為:a2+a2
橙色部分面積為:b2
已知藍色面積=橙色面積
所以a2+a2=b2
勾股定理:
如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2
十、教學(xué)反思
成功之處:
1、在上課的起始放出圖片引起學(xué)生的學(xué)習(xí)興趣,為新授課做準備。
2、讓學(xué)生觀察圖片,找出數(shù)學(xué)信息,以問題引出新課,學(xué)習(xí)完新課后讓學(xué)生回頭解決最開始的問題
3、鼓勵學(xué)生運用多種方法解釋圖中的面積問題,并引導(dǎo)學(xué)生靠近勾股定理。
不足之處: .
1、在圖片引導(dǎo)新課的時候只是單純地讓學(xué)生看,沒有提問他們看到了什么。
2、證明過程講解沒有讓學(xué)生嘗試證明。
需要改進的地方:
1、認真鉆研教材,把握教材中各個環(huán)節(jié)之間的關(guān)系,比如說,本節(jié)課需要著重把勾股定理的證明進行講解,學(xué)生通過探索和老師的引導(dǎo)得出勾股定理。
2、需學(xué)習(xí)提問的技巧,爭取做到提出一個問題之后,學(xué)生能馬上明白老師的用意。
備注:此表頁碼不夠可以增加,須排版整潔、美觀。
《勾股定理》教學(xué)設(shè)計2
教學(xué)目標:
理解并掌握勾股定理及其證明。在學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合和從特殊到一般的思想。通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,培養(yǎng)學(xué)生的合作交流意識和探索精神
重點
探索和證明勾股定理。
難點
用拼圖方法證明勾股定理。
教學(xué)準備:
教具
多媒體課件。
學(xué)具
剪刀和邊長分別為a、b的兩個連體正方形紙片。
教學(xué)流程安排
活動流程圖活動內(nèi)容和目的
活動1創(chuàng)設(shè)情境→激發(fā)興趣通過對趙爽弦圖的了解,激發(fā)起學(xué)生對勾股定理的探索興趣。
活動2觀察特例→發(fā)現(xiàn)新知通過問題激發(fā)學(xué)生好奇、探究和主動學(xué)習(xí)的.欲望。
活動3深入探究→交流歸納觀察分析方格圖,得出直角三角形的性質(zhì)——勾股定理,發(fā)展學(xué)生分析問題的能力。
活動4拼圖驗證→加深理解通過剪拼趙爽弦圖證明勾股定理,體會數(shù)形結(jié)合思想,激發(fā)探索精神。
活動5實踐應(yīng)用→拓展提高初步應(yīng)用所學(xué)知識,加深理解。
活動6回顧小結(jié)→整體感知回顧、反思、交流。
活動7布置作業(yè)→鞏固加深鞏固、發(fā)展提高。
《勾股定理》教學(xué)設(shè)計3
一、教材分析:
。ㄒ唬┍竟(jié)內(nèi)容在全書和章節(jié)的地位
這節(jié)課是九年制義務(wù)教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。
。ǘ┤S教學(xué)目標:
1、理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運用勾股定理及其計算;
2、通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。
。ㄈ┙虒W(xué)重點、難點:
勾股定理的證明與運用
用面積法等方法證明勾股定理
對于勾股定理的得出,首先需要學(xué)生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運用數(shù)學(xué)的思想意識,但學(xué)生在這一方面的可預(yù)見性和耐挫折能力并不是很成熟,從而形成困難。
1、創(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學(xué)生的問題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進入學(xué)習(xí)過程;
2、自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數(shù)學(xué)問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;
3、張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調(diào)動了學(xué)生的學(xué)習(xí)積極性。
二、教法與學(xué)法分析
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時代精神。基本的教學(xué)程序是“創(chuàng)設(shè)情景—動手操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)”六個方面。
新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動手”、“動腦”、“動口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。
三、教學(xué)過程設(shè)計
。ㄒ唬﹦(chuàng)設(shè)情景
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的`距離是2.5米,請問消防隊員能否進入三樓滅火?
問題的設(shè)計有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。這種以實際問題作為切入點導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。
。ǘ﹦邮植僮
1、課件出示課本P99圖19.2.1:
觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結(jié)論?
學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學(xué)生用語言進行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。
2、緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學(xué)生在預(yù)先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點,也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。
3、再問:當邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計算。這樣設(shè)計的目的是讓學(xué)生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。
。ㄈw納驗證
通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會“文字語言”與“數(shù)學(xué)語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問題。
先后三次驗證“勾股定理”這一結(jié)論,期間學(xué)生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學(xué)生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也有利于培養(yǎng)學(xué)生嚴謹、科學(xué)的學(xué)習(xí)態(tài)度。
(四)問題解決
1、讓學(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會到成功的快樂。
2、自學(xué)課本P101例1,然后完成P102練習(xí)。
。ㄎ澹┱n堂小結(jié)
1、小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識的途徑進行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。
2、教師用多媒體介紹“勾股定理史話”
、佟吨荀滤銖健罚何髦艿纳谈撸ü磺Ф嗄昵埃┌l(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
、诳滴鯏(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。
目的是對學(xué)生進行愛國主義教育,激勵學(xué)生奮發(fā)向上。
(六)布置作業(yè):課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進一步體會定理與實際生活的聯(lián)系。
以上內(nèi)容,我僅從“說教材”,“說學(xué)情”、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!
《勾股定理》教學(xué)設(shè)計4
一、教材分析:
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學(xué)目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
二、教學(xué)重點:
勾股定理的證明和應(yīng)用。
三、教學(xué)難點:
勾股定理的證明。
四、教法和學(xué)法:
教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:
以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
五、教學(xué)程序
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的`認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
。ㄒ唬﹦(chuàng)設(shè)情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標。
。ǘ┏醪礁兄斫饨滩
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
。ㄈ┵|(zhì)疑解難、討論歸納:
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
。2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習(xí)強化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
。ㄎ澹w納總結(jié)練習(xí)反饋
引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
《勾股定理》教學(xué)設(shè)計5
一、教案背景概述:
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標:
1、經(jīng)歷用面積割、補法探索勾股定理的`過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
4、欣賞設(shè)計圖形美。
二、教案運行描述:
教學(xué)準備階段:
學(xué)生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
三、教學(xué)流程:
。ㄒ唬┮
同學(xué)們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
。ǘ⿲嶒炋骄
1、取方格紙片,在上面先設(shè)計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,如圖1
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
。ㄓ懻撾y點:以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)
。ㄈ┨剿魉媒Y(jié)論的正確性
當直角三角形的直角邊分別為a 、b,斜邊為c時,是否一定成立?
1、指導(dǎo)學(xué)生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導(dǎo)學(xué)生進行說理:
如圖2(用補的方法說明)
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前20xx年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點題)
20xx年,世界數(shù)學(xué)家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
師介紹:(出示圖片)勾股定理是數(shù)學(xué)史上的一顆璀璨明珠,它的證明在數(shù)學(xué)史上屢創(chuàng)奇跡,從畢達哥拉斯到現(xiàn)在,吸引著世界上無數(shù)的數(shù)學(xué)家、物理學(xué)家、數(shù)學(xué)愛好者對它的探究,甚至政界要人——美國第20任總統(tǒng)加菲爾德,也加入到對它的探索證明中,如圖是他當年設(shè)計的證明方法。據(jù)說至今已經(jīng)找到的證明方法有四百多種,且每年還會有所增加。(若有時間可以繼續(xù)出示學(xué)生中有價值的圖片進行討論),有興趣的同學(xué)課后可以繼續(xù)探索……
四、總結(jié):
本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
五、作業(yè):
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
【《勾股定理》教學(xué)設(shè)計】相關(guān)文章:
《勾股定理》教學(xué)設(shè)計04-28
八年級數(shù)學(xué)勾股定理教學(xué)設(shè)計05-09
勾股定理教案02-11
八年級勾股定理教學(xué)反思04-22
《勾股定理應(yīng)用》教案08-28