亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 函數(shù)總結(jié)知識(shí)點(diǎn)初中

      時(shí)間:2024-10-10 08:36:06 總結(jié) 投訴 投稿

      函數(shù)總結(jié)知識(shí)點(diǎn)初中

        總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它能夠使頭腦更加清醒,目標(biāo)更加明確,我想我們需要寫(xiě)一份總結(jié)了吧。那么總結(jié)有什么格式呢?下面是小編幫大家整理的函數(shù)總結(jié)知識(shí)點(diǎn)初中,希望對(duì)大家有所幫助。

      函數(shù)總結(jié)知識(shí)點(diǎn)初中

      函數(shù)總結(jié)知識(shí)點(diǎn)初中1

        三角和的公式

        sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

        cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

        tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

        倍角公式

        tan2A = 2tanA/(1-tan2 A)

        Sin2A=2SinA?CosA

        Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

        三倍角公式

        sin3A = 3sinA-4(sinA)3;

        cos3A = 4(cosA)3 -3cosA

        tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

        三角函數(shù)特殊值

        α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

        α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

        α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

        a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

        α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

        α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

        α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

        α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

        α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

        α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

        α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

        α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

        三角函數(shù)記憶順口溜

        1三角函數(shù)記憶口訣

        “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱(chēng)的'變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。

        以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。

        2符號(hào)判斷口訣

        全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

        也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱(chēng)。口訣中未提及的都是負(fù)值。

        “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫(xiě)所占的象限對(duì)應(yīng)的三角函數(shù)為正值。

        3三角函數(shù)順口溜

        三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

        同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

        中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱(chēng)。

        計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。

        逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

        萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

        一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

        三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

        利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

      函數(shù)總結(jié)知識(shí)點(diǎn)初中2

        當(dāng)h>0時(shí),y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動(dòng)h個(gè)單位得到,

        當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

        當(dāng)h>0,k>0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

        當(dāng)h>0,k<0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

        當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

        當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

        因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

        2.拋物線y=a_^2+b_+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線_=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

        3.拋物線y=a_^2+b_+c(a≠0),若a>0,當(dāng)_≤-b/2a時(shí),y隨_的增大而減小;當(dāng)_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當(dāng)_≤-b/2a時(shí),y隨_的增大而增大;當(dāng)_≥-b/2a時(shí),y隨_的增大而減小.

        4.拋物線y=a_^2+b_+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

        (a≠0)的兩根.這兩點(diǎn)間的.距離AB=|_?-_?|

        當(dāng)△=0.圖象與_軸只有一個(gè)交點(diǎn);

        當(dāng)△<0.圖象與_軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數(shù)時(shí),都有y<0.

        5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當(dāng)_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

        頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知_、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

        y=a_^2+b_+c(a≠0).

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).

        (3)當(dāng)題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

        7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

      函數(shù)總結(jié)知識(shí)點(diǎn)初中3

        1、二次函數(shù)的概念

        1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類(lèi)似,二次項(xiàng)系數(shù),而可以為零。二次函數(shù)的定義域是全體實(shí)數(shù)。

        2.二次函數(shù)的結(jié)構(gòu)特征:

       、诺忍(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2。

        ⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng)。

        2、初三數(shù)學(xué)二次函數(shù)的'三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)。

        頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]。

        交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]。

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a。

        3、二次函數(shù)的性質(zhì)

        1.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

        2.k,b與函數(shù)圖像所在象限:

        當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;

        當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。

        當(dāng)b>0時(shí),直線必通過(guò)一、二象限;

        當(dāng)b=0時(shí),直線通過(guò)原點(diǎn);

        當(dāng)b<0時(shí),直線必通過(guò)三、四象限。

        特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

        這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。

        4、初三數(shù)學(xué)二次函數(shù)圖像

        對(duì)于一般式:

       、賧=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對(duì)稱(chēng)。

       、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對(duì)稱(chēng)。

        ③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點(diǎn)對(duì)稱(chēng)。

        ④y=ax2+bx+c與y=-ax2+bx-c關(guān)于原點(diǎn)中心對(duì)稱(chēng)。(即繞原點(diǎn)旋轉(zhuǎn)180度后得到的圖形)

        對(duì)于頂點(diǎn)式:

        ①y=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對(duì)稱(chēng),即頂點(diǎn)(h,k)和(-h,k)關(guān)于y軸對(duì)稱(chēng),橫坐標(biāo)相反、縱坐標(biāo)相同。

       、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對(duì)稱(chēng),即頂點(diǎn)(h,k)和(h,-k)關(guān)于x軸對(duì)稱(chēng),橫坐標(biāo)相同、縱坐標(biāo)相反。

        ③y=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點(diǎn)對(duì)稱(chēng),即頂點(diǎn)(h,k)和(h,k)相同,開(kāi)口方向相反。

       、躽=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點(diǎn)對(duì)稱(chēng),即頂點(diǎn)(h,k)和(-h,-k)關(guān)于原點(diǎn)對(duì)稱(chēng),橫坐標(biāo)、縱坐標(biāo)都相反。(其實(shí)①③④就是對(duì)f(x)來(lái)說(shuō)f(-x),-f(x),-f(-x)的情況)

      函數(shù)總結(jié)知識(shí)點(diǎn)初中4

        計(jì)算方法

        1.樣本平均數(shù):

        2.樣本方差:

        3.樣本標(biāo)準(zhǔn)差:

        相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

        內(nèi)容提要

        一、直線、相交線、平行線

        1.線段、射線、直線三者的區(qū)別與聯(lián)系

        從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。

        2.線段的中點(diǎn)及表示

        3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

        4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)

        5.角(平角、周角、直角、銳角、鈍角)

        6.互為余角、互為補(bǔ)角及表示方法

        7.角的平分線及其表示

        8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

        9.對(duì)頂角及性質(zhì)

        10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

        11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

        12.定義、命題、命題的組成

        13.公理、定理

        14.逆命題

        二、三角形

        分類(lèi):

       、虐催叿;

       、瓢唇欠

        1.定義(包括內(nèi)、外角)

        2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段

        討論:①定義②__線的交點(diǎn)—三角形的_心③性質(zhì)

       、俑呔②中線③角平分線④中垂線⑤中位線

        ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

        4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

        5.全等三角形

        ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

       、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯(zhuān)用方法

        6.三角形的面積

       、乓话阌(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。

        7.重要輔助線

       、胖悬c(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

        8.證明方法

        ⑴直接證法:綜合法、分析法

       、崎g接證法—反證法:①反設(shè)②歸謬③結(jié)論

        ⑶證線段相等、角相等常通過(guò)證三角形全等

       、茸C線段倍分關(guān)系:加倍法、折半法

        ⑸證線段和差關(guān)系:延結(jié)法、截余法

       、首C面積關(guān)系:將面積表示出來(lái)

        三、四邊形

        分類(lèi)表:

        1.一般性質(zhì)(角)

       、艃(nèi)角和:360°

        ⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。

        推論1:順次連結(jié)對(duì)角線相等的.四邊形各邊中點(diǎn)得菱形。

        推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。

       、峭饨呛停360°

        2.特殊四邊形

       、叛芯克鼈兊囊话惴椒:

       、破叫兴倪呅、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

        ⑶判定步驟:四邊形→平行四邊形→矩形→正方形

        菱形

       、葘(duì)角線的紐帶作用:

        3.對(duì)稱(chēng)圖形

        ⑴軸對(duì)稱(chēng)(定義及性質(zhì));⑵中心對(duì)稱(chēng)(定義及性質(zhì))

        4.有關(guān)定理:①平行線等分線段定理及其推論1、2

       、谌切、梯形的中位線定理

        ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

        5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中常“平移一腰”、“平移對(duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。

        6.作圖:任意等分線段。

      函數(shù)總結(jié)知識(shí)點(diǎn)初中5

        1、定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,iai還可以決定開(kāi)口大小,iai越大開(kāi)口就越小,iai越小開(kāi)口就越大.)則稱(chēng)y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

        2、二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點(diǎn)式:y=a(x-h)^2+k [拋物線的頂點(diǎn)p(h,k)]

        交點(diǎn)式:y=a(x-x)(x-x ) [僅限于與x軸有交點(diǎn)a(x,0)和b(x,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

        3、二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        4、拋物線的性質(zhì)

        1.拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線x = -b/2a。

        對(duì)稱(chēng)軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)p。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

        2.拋物線有一個(gè)頂點(diǎn)p,坐標(biāo)為:p ( -b/2a,(4ac-b^2)/4a )當(dāng)-b/2a=0時(shí),p在y軸上;當(dāng)δ= b^2-4ac=0時(shí),p在x軸上。

        3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。|a|越大,則拋物線的開(kāi)口越小。

        4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

        當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;

        當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。

        5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6.拋物線與x軸交點(diǎn)個(gè)數(shù)

        δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

        δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

        δ= b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。x的取值是虛數(shù)(x= -b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

        5、二次函數(shù)與一元二次方程

        特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2+bx+c,當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),即ax^2+bx+c=0

        此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

        1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸:

        當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

        當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

        當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線的.大體位置就很清楚了.這給畫(huà)圖象提供了方便.

        2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

        3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而減小;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而增大;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而減小.

        4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

        (a≠0)的兩根.這兩點(diǎn)間的距離ab=|x-x|

        當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

        當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

        5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x= -b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

        頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

        y=ax^2+bx+c(a≠0).

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

        (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0).

        7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

      函數(shù)總結(jié)知識(shí)點(diǎn)初中6

        ∴當(dāng)x1時(shí)函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

        4],求實(shí)數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開(kāi)口方向及對(duì)稱(chēng)軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

        解:(1)f(x)的對(duì)稱(chēng)軸是x可得函數(shù)圖像開(kāi)口向上

        2(a1)21a,且二次項(xiàng)系數(shù)為1>0

        1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

        4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

        例5、函數(shù)f(x)x2bx2,滿(mǎn)足:f(3x)f(3x)

        (1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對(duì)稱(chēng)軸為x(3x)(3x)23

        b3可得b62f(x)x26x2(x3)211

        而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對(duì)稱(chēng)軸x3對(duì)稱(chēng)

        x1x223,可得x1x26

        第三章第32頁(yè)由二次項(xiàng)系數(shù)為1>0,可知拋物線開(kāi)口向上又134,132,431

        ∴依二次函數(shù)的對(duì)稱(chēng)性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

        (Ⅳ)教學(xué)后記:

        第三章第33頁(yè)

        擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

        學(xué)大教育

        初中數(shù)學(xué)函數(shù)板塊的知識(shí)點(diǎn)總結(jié)與歸類(lèi)學(xué)習(xí)方法

        初中數(shù)學(xué)知識(shí)大綱中,函數(shù)知識(shí)占了很大的知識(shí)體系比例,學(xué)好了函數(shù),掌握了函數(shù)的'基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個(gè)模塊知識(shí),會(huì)做每一類(lèi)函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績(jī)自然上高峰,同時(shí),函數(shù)的思想是學(xué)好其他理科類(lèi)學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類(lèi)函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

        一、一次函數(shù)

        1.定義:在定義中應(yīng)注意的問(wèn)題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

      函數(shù)總結(jié)知識(shí)點(diǎn)初中7

        當(dāng)k>0時(shí),圖象分別位于第一、三象限,同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k<0時(shí),圖象分別位于二、四象限,同一個(gè)象限內(nèi),y隨x的增大而增大。

        >0時(shí),函數(shù)在x<0上同為減函數(shù)、在x>0上同為減函數(shù);k<0時(shí),函數(shù)在x<0上為增函數(shù)、在x>0上同為增函數(shù)。定義域?yàn)閤≠0;值域?yàn)閥≠0。

        因?yàn)樵趛=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交。

        在一個(gè)反比例函數(shù)圖象上任取兩點(diǎn)P,Q,過(guò)點(diǎn)P,Q分別作x軸,y軸的平行線,與坐標(biāo)軸圍成的`矩形面積為S1,S2則S1=S2=|K|

        反比例函數(shù)的圖象既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形,它有兩條對(duì)稱(chēng)軸y=xy=-x(即第一三,二四象限角平分線),對(duì)稱(chēng)中心是坐標(biāo)原點(diǎn)。

        若設(shè)正比例函數(shù)y=mx與反比例函數(shù)y=n/x交于A、B兩點(diǎn)(m、n同號(hào)),那么AB兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)。

        設(shè)在平面內(nèi)有反比例函數(shù)y=k/x和一次函數(shù)y=mx+n,要使它們有公共交點(diǎn),則n^2+4k·m≥(不小于)0。

        反比例函數(shù)y=k/x的漸近線:x軸與y軸。

        反比例函數(shù)關(guān)于正比例函數(shù)y=x,y=-x軸對(duì)稱(chēng),并且關(guān)于原點(diǎn)中心對(duì)稱(chēng).

        反比例上一點(diǎn)m向x、y分別做垂線,交于q、w,則矩形mwqo(o為原點(diǎn))的面積為|k|

        值相等的反比例函數(shù)重合,k值不相等的反比例函數(shù)永不相交。

        |k|越大,反比例函數(shù)的圖象離坐標(biāo)軸的距離越遠(yuǎn)。

        反比例函數(shù)圖象是中心對(duì)稱(chēng)圖形,對(duì)稱(chēng)中心是原點(diǎn)

      函數(shù)總結(jié)知識(shí)點(diǎn)初中8

        一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。

        主要考察內(nèi)容:

       、贂(huì)畫(huà)一次函數(shù)的圖像,并掌握其性質(zhì)。

        ②會(huì)根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

        ③能用一次函數(shù)解決實(shí)際問(wèn)題。

       、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。

        突破方法:

       、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

       、谶\(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問(wèn)題。

        ③掌握用待定系數(shù)法球一次函數(shù)解析式。

        ④做一些綜合題的訓(xùn)練,提高分析問(wèn)題的能力。

        函數(shù)性質(zhì):

        1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

        2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。

        3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

        4.在兩個(gè)一次函數(shù)表達(dá)式中:

        當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱(chēng)y是x的一次函數(shù)圖像性質(zhì)

        1、作法與圖形:通過(guò)如下3個(gè)步驟:

       。1)列表.

       。2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線即可。

        正比例函數(shù)y=kx(k≠0)的圖象是過(guò)坐標(biāo)原點(diǎn)的一條直線,一般。0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的.圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

        2、性質(zhì):

       。1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。

       。2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過(guò)原點(diǎn)。

        3、函數(shù)不是數(shù),它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。

        4、k,b與函數(shù)圖像所在象限:

        y=kx時(shí)(即b等于0,y與x成正比例):

        當(dāng)k>0時(shí),直線必通過(guò)第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過(guò)第一、二、三象限;當(dāng)k>0,b

      函數(shù)總結(jié)知識(shí)點(diǎn)初中9

        一、基本概念

        1.方程、方程的解(根)、方程組的解、解方程(組)

        2.分類(lèi):

        二、解方程的依據(jù)—等式性質(zhì)

        1.a=b←→a+c=b+c

        2.a=b←→ac=bc (c≠0)

        三、解法

        1.一元一次方程的解法:去分母→去括號(hào)→移項(xiàng)→合并同類(lèi)項(xiàng)→

        系數(shù)化成1→解。

        2.元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

       、诩訙p法

        四、一元二次方程

        1.定義及一般形式:

        2.解法:⑴直接開(kāi)平方法(注意特征)

       、婆浞椒(注意步驟—推倒求根公式)

       、枪椒ǎ

        ⑷因式分解法(特征:左邊=0)

        3.根的判別式:

        4.根與系數(shù)頂?shù)年P(guān)系:

        逆定理:若,則以為根的一元二次方程是:。

        5.常用等式:

        五、可化為一元二次方程的方程

        1.分式方程

        ⑴定義

       、苹舅枷耄

        ⑶基本解法:①去分母法②換元法(如,)

       、闰(yàn)根及方法

        2.無(wú)理方程

        ⑴定義

       、苹舅枷耄

        ⑶基本解法:①乘方法(注意技巧!!)②換元法(例,)⑷驗(yàn)根及方法

        3.簡(jiǎn)單的二元二次方程組

        由一個(gè)二元一次方程和一個(gè)二元二次方程組成的`二元二次方程組都可用代入法解。

        六、列方程(組)解應(yīng)用題

        一概述

        列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:

       、艑忣}。理解題意。弄清問(wèn)題中已知量是什么,未知量是什么,問(wèn)題給出和涉及的相等關(guān)系是什么。

        ⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來(lái)說(shuō),未知數(shù)越多,方程越易列,但越難解。

       、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。

       、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問(wèn)題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。

        ⑸解方程及檢驗(yàn)。

        ⑹答案。

        綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題(設(shè)元、列方程),在由數(shù)學(xué)問(wèn)題的解決而導(dǎo)致實(shí)際問(wèn)題的解決(列方程、寫(xiě)出答案)。在這個(gè)過(guò)程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

        二常用的相等關(guān)系

        1.行程問(wèn)題(勻速運(yùn)動(dòng))

        基本關(guān)系:s=vt

       、畔嘤鰡(wèn)題(同時(shí)出發(fā)):

        + = ;

        ⑵追及問(wèn)題(同時(shí)出發(fā)):

        若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則

       、撬泻叫校;

        2.配料問(wèn)題:溶質(zhì)=溶液_濃度

        溶液=溶質(zhì)+溶劑

        3.增長(zhǎng)率問(wèn)題:

        4.工程問(wèn)題:基本關(guān)系:工作量=工作效率_工作時(shí)間(常把工作量看著單位“1”)。

        5.幾何問(wèn)題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

      函數(shù)總結(jié)知識(shí)點(diǎn)初中10

        二次根式

        學(xué)生已經(jīng)學(xué)過(guò)整式與分式,知道用式子可以表示實(shí)際問(wèn)題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問(wèn)題還會(huì)遇到二次根式!岸胃健币徽戮蛠(lái)認(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。

        在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:

        注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對(duì)于二次根式的加減來(lái)說(shuō)更易于掌握,教科書(shū)先安排二次根式的乘除,再安排二次根式的加減!岸胃降某顺币还(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計(jì)算的例子體會(huì)二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到

        并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。

        “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類(lèi)比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過(guò)例題說(shuō)明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。

        一元二次方程

        學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì)遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠(lái)認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問(wèn)題。

        本章首先通過(guò)雕像設(shè)計(jì)、制作方盒、排球比賽等問(wèn)題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過(guò)數(shù)值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對(duì)一元二次方程的解加以體會(huì),并給出一元二次方程的根的概念,“降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。

        (1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如的方程。然后舉例說(shuō)明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。對(duì)于沒(méi)有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。

        (2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。

        (3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。

        “實(shí)際問(wèn)題與一元二次方程”一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。

        旋轉(zhuǎn)

        學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱(chēng),探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書(shū)中圖形變換又增添了一名新成員――旋轉(zhuǎn)!靶D(zhuǎn)”一章就來(lái)認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱(chēng)和中心對(duì)稱(chēng)圖形。

        “旋轉(zhuǎn)”一節(jié)首先通過(guò)實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說(shuō)明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。

        “中心對(duì)稱(chēng)”一節(jié)首先通過(guò)實(shí)例介紹中心對(duì)稱(chēng)的概念。然后讓學(xué)生探究中心對(duì)稱(chēng)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。這些內(nèi)容之后,通過(guò)線段、平行四邊形引出中心對(duì)稱(chēng)圖形的`概念。最后介紹關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。

        “課題學(xué)習(xí)圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。關(guān)注我們,搜微信公眾號(hào):chzhshuxue

        圓

        圓是一種常見(jiàn)的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識(shí)圓,探索它的性質(zhì),并用這些知識(shí)解決一些實(shí)際問(wèn)題。通過(guò)這一章的學(xué)習(xí),學(xué)生的解決圖形問(wèn)題的能力將會(huì)進(jìn)一步提高。

        “圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問(wèn)題。接下來(lái),讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。

        “與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過(guò)證明“在同一直線上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線和圓的三種位置關(guān)系、切線的概念以及與切線有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。

        “正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。

        “弧長(zhǎng)和扇形面積”一節(jié)首先介紹弧長(zhǎng)公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。

        概率初步

        將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識(shí)這個(gè)問(wèn)題了。掌握了概率的初步知識(shí),學(xué)生還會(huì)解決更多的實(shí)際問(wèn)題。

        “概率”一節(jié)首先通過(guò)實(shí)例介紹隨機(jī)事件的概念,然后通過(guò)擲幣問(wèn)題引出概率的概念。

        “用列舉法求概率”一節(jié)首先通過(guò)具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫(huà)樹(shù)形圖。

        “利用頻率估計(jì)概率”一節(jié)通過(guò)幼樹(shù)成活率和柑橘損壞率等問(wèn)題介紹了用頻率估計(jì)概率的方法。

        “課題學(xué)習(xí)鍵盤(pán)上字母的排列規(guī)律”一節(jié)讓學(xué)生通過(guò)這一課題的研究體會(huì)概率的廣泛應(yīng)用。

      函數(shù)總結(jié)知識(shí)點(diǎn)初中11

        當(dāng)h>0時(shí),y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動(dòng)h個(gè)單位得到,當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

        當(dāng)h>0,k>0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

        當(dāng)h>0,k<0時(shí),將拋物線y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

        當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

        當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

        因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

        2.拋物線y=a_^2+b_+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線_=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

        3.拋物線y=a_^2+b_+c(a≠0),若a>0,當(dāng)_≤-b/2a時(shí),y隨_的增大而減小;當(dāng)_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當(dāng)_≤-b/2a時(shí),y隨_的.增大而增大;當(dāng)_≥-b/2a時(shí),y隨_的增大而減小.

        4.拋物線y=a_^2+b_+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

        (a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|

        當(dāng)△=0.圖象與_軸只有一個(gè)交點(diǎn);

        當(dāng)△<0.圖象與_軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數(shù)時(shí),都有y<0.

        5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當(dāng)_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

        頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知_、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

        y=a_^2+b_+c(a≠0).

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).

        (3)當(dāng)題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

        7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

      函數(shù)總結(jié)知識(shí)點(diǎn)初中12

        課題

        3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

        教學(xué)目標(biāo)

        1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式

        教學(xué)重點(diǎn)

        掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

        教學(xué)難點(diǎn)

        掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

        教學(xué)方法

        講練結(jié)合法

        教學(xué)過(guò)程

        (I)知識(shí)要點(diǎn)(見(jiàn)下表:)

        第三章第29頁(yè)函數(shù)名稱(chēng)解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過(guò)點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過(guò)點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無(wú)無(wú)無(wú)b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

        第三章第30頁(yè)b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對(duì)稱(chēng)軸x,頂點(diǎn)(,)

        2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解

        例1、求滿(mǎn)足下列條件的二次函數(shù)的解析式:(1)拋物線過(guò)點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的`頂點(diǎn)為P(1,5)且過(guò)點(diǎn)Q(3,3)

        (3)拋物線對(duì)稱(chēng)軸是x2,它在x軸上截出的線段AB長(zhǎng)為2且拋物線過(guò)點(diǎn)(1,7)。2,

        解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為

        abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得

        a2,故y2(x1)252x24x3

        (3)∵拋物線對(duì)稱(chēng)軸為x2;

        ∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對(duì)稱(chēng);∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

        ∴所求二次函數(shù)為yx24x2,

        2,0)、B(222,0)

        2)(x22)a(x2)22a,將(1,7)

        5),例2:二次函數(shù)的圖像過(guò)點(diǎn)(0,8),(1,(4,0)

        (1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

        例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

        113x1(x)2,知函數(shù)的圖像開(kāi)口向上,對(duì)稱(chēng)軸為x

        224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

      函數(shù)總結(jié)知識(shí)點(diǎn)初中13

        1、反比例函數(shù)的表達(dá)式

        X是自變量,Y是X的函數(shù)

        y=k/x=k·1/x

        xy=k

        y=k·x^(-1)(即:y等于x的負(fù)一次方,此處X必須為一次方)

        y=kx(k為常數(shù)且k≠0,x≠0)若y=k/nx此時(shí)比例系數(shù)為:k/n

        2、函數(shù)式中自變量取值的范圍

       、賙≠0;②在一般的情況下,自變量x的.取值范圍可以是不等于0的任意實(shí)數(shù);③函數(shù)y的取值范圍也是任意非零實(shí)數(shù)。

        解析式y(tǒng)=k/x其中X是自變量,Y是X的函數(shù),其定義域是不等于0的一切實(shí)數(shù)

        y=k/x=k·1/x

        xy=k

        y=k·x^(-1)

        y=kx(k為常數(shù)(k≠0),x不等于0)

        3、反比例函數(shù)圖象

        反比例函數(shù)的圖像屬于以原點(diǎn)為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)的雙曲線(hyperbola),反比例函數(shù)圖像中每一象限的每一支曲線會(huì)無(wú)限接近X軸Y軸但不會(huì)與坐標(biāo)軸相交(K≠0)。

        4、反比例函數(shù)中k的幾何意義是什么?有哪些應(yīng)用?

        過(guò)反比例函數(shù)y=k/x(k≠0),圖像上一點(diǎn)P(x,y),作兩坐標(biāo)軸的垂線,兩垂足、原點(diǎn)、P點(diǎn)組成一個(gè)矩形,矩形的面積S=x的絕對(duì)值_y的絕對(duì)值=(x_y)的絕對(duì)值=|k|

        研究函數(shù)問(wèn)題要透視函數(shù)的本質(zhì)特征。反比例函數(shù)中,比例系數(shù)k有一個(gè)很重要的幾何意義,那就是:過(guò)反比例函數(shù)圖象上任一點(diǎn)P作x軸、y軸的垂線PM、PN,垂足為M、N則矩形PMON的面積S=PM·PN=|y|·|x|=|xy|=|k|。

        所以,對(duì)雙曲線上任意一點(diǎn)作x軸、y軸的垂線,它們與x軸、y軸所圍成的矩形面積為常數(shù)。從而有k的絕對(duì)值。在解有關(guān)反比例函數(shù)的問(wèn)題時(shí),若能靈活運(yùn)用反比例函數(shù)中k的幾何意義,會(huì)給解題帶來(lái)很多方便。

      函數(shù)總結(jié)知識(shí)點(diǎn)初中14

        1.常量和變量

        在某變化過(guò)程中可以取不同數(shù)值的量,叫做變量.在某變化過(guò)程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

        2.函數(shù)

        設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x在某一范圍的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).

        3.自變量的取值范圍

        (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

        (3)偶次方根:被開(kāi)方數(shù)為非負(fù)數(shù).

        (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

        4.函數(shù)值

        對(duì)于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值,叫做x=a時(shí)的函數(shù)值.

        5.函數(shù)的表示法

        (1)解析法;(2)列表法;(3)圖象法.

        6.函數(shù)的圖象

        把自變量x的一個(gè)值和函數(shù)y的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫(huà)函數(shù)圖象的步驟:

        (1)寫(xiě)出函數(shù)解析式及自變量的取值范圍;

        (2)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值;

        (3)描點(diǎn):以表中對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

        (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來(lái).

        7.一次函數(shù)

        (1)一次函數(shù)

        如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

        特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).

        (2)一次函數(shù)的圖象

        一次函數(shù)y=kx+b的圖象是一條經(jīng)過(guò)(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過(guò)原點(diǎn)的直線.需要說(shuō)明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.

        (3)一次函數(shù)的'性質(zhì)

        當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減。本y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

        (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

       、偃魏我辉淮畏匠潭伎梢赞D(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

       、诙淮畏匠探M對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).

       、廴魏我辉淮尾坏仁蕉伎梢赞D(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.

        8.反比例函數(shù)(1)反比例函數(shù)

        (1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

        (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

        (3)反比例函數(shù)的性質(zhì)

       、佼(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減。

        ②當(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

        ③反比例函數(shù)圖象關(guān)于直線y=±x對(duì)稱(chēng),關(guān)于原點(diǎn)對(duì)稱(chēng).

        (4)k的兩種求法

        ①若點(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

        若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

        (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問(wèn)題

        若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無(wú)交點(diǎn);

        當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱(chēng).

        1.二次函數(shù)

        如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

        幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

        2.二次函數(shù)的圖象

        二次函數(shù)y=ax2+bx+c的圖象是對(duì)稱(chēng)軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過(guò)平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

        3.二次函數(shù)的性質(zhì)

        二次函數(shù)y=ax2+bx+c的性質(zhì)對(duì)應(yīng)在它的圖象上,有如下性質(zhì):

        (1)拋物線y=ax2+bx+c的頂點(diǎn)是,對(duì)稱(chēng)軸是直線,頂點(diǎn)必在對(duì)稱(chēng)軸上;

        (2)若a>0,拋物線y=ax2+bx+c的開(kāi)口向上,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開(kāi)口向下,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減。划(dāng)x=時(shí),y有最大值;

        (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

        (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

       。0時(shí),拋物線y=ax2+bx+c與x軸沒(méi)有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

        拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來(lái)決定.

      函數(shù)總結(jié)知識(shí)點(diǎn)初中15

        I.定義與定義表達(dá)式

        一般地,自變量_和因變量y之間存在如下關(guān)系:y=a_^2+b_+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)則稱(chēng)y為_(kāi)的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

        II.二次函數(shù)的三種表達(dá)式

        一般式:y=a_^2+b_+c(a,b,c為常數(shù),a≠0)

        頂點(diǎn)式:y=a(_-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

        交點(diǎn)式:y=a(_-_?)(_-_?)[僅限于與_軸有交點(diǎn)A(_?,0)和B(_?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

        III.二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=_^2的'圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        IV.拋物線的性質(zhì)

        1.拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線_=-b/2a。

        對(duì)稱(chēng)軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線_=0)

        2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在_軸上。

        3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。|a|越大,則拋物線的開(kāi)口越小。

        4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

        當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;

        當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。

        5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6.拋物線與_軸交點(diǎn)個(gè)數(shù)

        Δ=b^2-4ac>0時(shí),拋物線與_軸有2個(gè)交點(diǎn)。

        Δ=b^2-4ac=0時(shí),拋物線與_軸有1個(gè)交點(diǎn)。

        Δ=b^2-4ac<0時(shí),拋物線與_軸沒(méi)有交點(diǎn)。

        _的取值是虛數(shù)(_=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

        V.二次函數(shù)與一元二次方程

        特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=a_^2+b_+c,當(dāng)y=0時(shí),二次函數(shù)為關(guān)于_的一元二次方程(以下稱(chēng)方程),即a_^2+b_+c=0

        此時(shí),函數(shù)圖像與_軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與_軸交點(diǎn)的橫坐標(biāo)即為方程的根。

      【函數(shù)總結(jié)知識(shí)點(diǎn)初中】相關(guān)文章:

      初中函數(shù)知識(shí)點(diǎn)總結(jié)01-12

      函數(shù)知識(shí)點(diǎn)總結(jié)06-09

      高一函數(shù)知識(shí)點(diǎn)總結(jié)12-01

      初二函數(shù)知識(shí)點(diǎn)總結(jié)05-30

      初中數(shù)學(xué)函數(shù)總結(jié)04-09

      函數(shù)知識(shí)點(diǎn)總結(jié)[實(shí)用15篇]06-09

      高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)4篇02-05

      一次函數(shù)基本知識(shí)點(diǎn)總結(jié)05-03

      初中數(shù)學(xué)函數(shù)教案02-23

      初二數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)04-15