亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高等數(shù)學(xué)知識點(diǎn)總結(jié)

      時(shí)間:2025-02-20 16:29:50 賽賽 總結(jié) 投訴 投稿

      高等數(shù)學(xué)知識點(diǎn)總結(jié)

        總結(jié)是對過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評價(jià)的書面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,因此我們需要回頭歸納,寫一份總結(jié)了。那么你知道總結(jié)如何寫嗎?下面是小編整理的高等數(shù)學(xué)知識點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

      高等數(shù)學(xué)知識點(diǎn)總結(jié)

        高等數(shù)學(xué)知識點(diǎn)總結(jié) 1

        第一章:函數(shù)與極限

        1.理解函數(shù)的概念,掌握函數(shù)的表示方法。

        2.會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。

        3.了解函數(shù)的奇偶性、單調(diào)性、周期性、和有界性。

        4.掌握基本初等函數(shù)的性質(zhì)及圖形。

        5.理解復(fù)合函數(shù)及分段函數(shù)的有關(guān)概念,了解反函數(shù)及隱函數(shù)的概念。

        6.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù))會判別函數(shù)間斷點(diǎn)的類型。

        7.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及極限存在與左右極限間的關(guān)系。

        8.掌握極限存在的兩個(gè)準(zhǔn)則,并會利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。

        9.掌握極限性質(zhì)及四則運(yùn)算法則。

        10.理解無窮孝無窮大的概念,掌握無窮小的比較方法,會用等價(jià)無窮小求極限。

        第二章:導(dǎo)數(shù)與微分

        1.理解導(dǎo)數(shù)與微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描寫一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。

        2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握初等函數(shù)的求導(dǎo)公式,了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求初等函數(shù)的微分。

        3.會求隱函數(shù)和參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。

        4.會求分段函數(shù)的導(dǎo)數(shù),了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)。

        第三章:微分中值定理與導(dǎo)數(shù)的應(yīng)用

        1.熟練運(yùn)用微分中值定理證明簡單命題。

        2.熟練運(yùn)用羅比達(dá)法則和泰勒公式求極限和證明命題。

        3.了解函數(shù)圖形的作圖步驟。了解方程求近似解的兩種方法:二分法、切線法。

        4.會求函數(shù)單調(diào)區(qū)間、凸凹區(qū)間、極值、拐點(diǎn)以及漸進(jìn)線、曲率。

        第四章:不定積分

        1.理解原函數(shù)和不定積分的概念,掌握不定積分的基本公式和性質(zhì)。

        2.會求有理函數(shù)、三角函數(shù)、有理式和簡單無理函數(shù)的不定積分

        3.掌握不定積分的分步積分法。

        4.掌握不定積分的換元積分法。

        第五章:定積分

        1.理解定積分的概念,掌握定積分的性質(zhì)及定積分中值定理。

        2.掌握定積分的換元積分法與分步積分法。

        3.了解廣義積分的概念,并會計(jì)算廣義積分,

        4.掌握反常積分的`運(yùn)算。

        5.理解變上限定積分定義的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。

        第六章:定積分的應(yīng)用

        1.掌握用定積分計(jì)算一些物理量(功、引力、壓力)。

        2.掌握用定積分表達(dá)和計(jì)算一些幾何量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積和側(cè)面積、平行截面面積為已知的立體體積)及函數(shù)的平均值。

        第七章:微分方程

        1.了解微分方程及其解、階、通解、初始條件和特解等概念。

        2.會解奇次微分方程,會用簡單變量代換解某些微分方程.

        3.掌握可分離變量的微分方程,會用簡單變量代換 解某些微分方程。

        4.掌握二階常系數(shù)齊次微分方程的解法,并會解某些高于二階的常系數(shù)齊次微分方程。

        5.掌握一階線性微分方程的解法,會解伯努利方程.

        6.會用降階法解下列微分方程y=f(x,y).

        7.會解自由項(xiàng)為多項(xiàng)式,指數(shù)函數(shù),正弦函數(shù),余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。

        8.會解歐拉方程。

        第八章:空間解析幾何與向量代數(shù)

        1.理解空間直線坐標(biāo)系,理解向量的概念及其表示。

        2.掌握向量的數(shù)量、積向量積、混合積并能用坐標(biāo)表達(dá)式進(jìn)行運(yùn)算,了解兩個(gè)向量垂直、平行的條件。

        3.掌握向量的線性運(yùn)算,掌握單位向量、方向角與方向余弦,掌握向量的坐標(biāo)表達(dá)式掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算方法。

        4.掌握直線方程的求法,會利用平面、直線的相互關(guān)系解決有關(guān)問題,會求點(diǎn)到直線及點(diǎn)到平面的距離。

        5.掌握平面方程及其求法,會求平面與平面的夾角,并會用平面的相互關(guān)系(平行相交垂直)解決有關(guān)問題。

        6.理解曲面方程的概念,了解二次曲面方程及其圖形,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。

        7.了解空間曲線的概念,了解空間曲線的參數(shù)方程和一般方程,了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。

        高等數(shù)學(xué)知識點(diǎn)總結(jié) 2

        極限

        1、知識范圍

        (1)數(shù)列極限的概念

        數(shù)列、數(shù)列極限的定義

        (2)數(shù)列極限的性質(zhì)

        性、有界性、四則運(yùn)算法則、夾通定理、單調(diào)有界數(shù)列極限存在定理

        (3)函數(shù)極限的概念

        函數(shù)在一點(diǎn)處極限的定義、左、右極限及其與極限的關(guān)系趨于無窮時(shí)函數(shù)的極限、函數(shù)極限的幾何意義

        (4)函數(shù)極限的性質(zhì)

        性、四則運(yùn)算法則、夾通定理

        (5)無窮小量與無窮大量

        無窮小量與無窮大量的定義、無窮小量與無窮大量的'關(guān)系、無窮小量的性質(zhì)、無窮小量的階

        (6)兩個(gè)重要極限

        2、要求

        (1)理解極限的概念,會求函數(shù)在一點(diǎn)處的左極限與右極限,了解函數(shù)在一點(diǎn)處極限存在的充分必要條件。

        (2)了解極限的有關(guān)性質(zhì),掌握極限的四則運(yùn)算法則。

        (3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系。會進(jìn)行無窮小量階的比較(高階、低階、同階和等價(jià))。會運(yùn)用等價(jià)無窮小量代換求極限。

        高等數(shù)學(xué)知識點(diǎn)總結(jié) 3

        1、一元函數(shù)微分學(xué)。主要考查導(dǎo)數(shù)與微分的求解;隱函數(shù)求導(dǎo);分段函數(shù)和絕對值函數(shù)可導(dǎo)性;洛比達(dá)法則求不定式極限;函數(shù)極值;方程的根;

        2、證明函數(shù)不等式;羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及輔助函數(shù)的構(gòu)造;值、最小值在物理、經(jīng)濟(jì)等方面實(shí)際應(yīng)用;用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。

        3、一元函數(shù)積分學(xué)。主要考查不定積分、定積分及廣義積分的計(jì)算;變上限積分的求導(dǎo)、極限等;積分中值定理和積分性質(zhì)的證明題;定積分的應(yīng)用,如計(jì)算旋轉(zhuǎn)面面積、旋轉(zhuǎn)體體積、變力作功等。

        4、向量代數(shù)和空間解析幾何。主要考查求向量的數(shù)量積、向量積及混合積;求直線方程和平面方程;平面與直線間關(guān)系及夾角的判定;旋轉(zhuǎn)面方程。

        5、多元函數(shù)微分學(xué)。主要考查偏導(dǎo)數(shù)存在、可微、連續(xù)的判斷;多元函數(shù)和隱函數(shù)的

        一階、二階偏導(dǎo)數(shù);二元、三元函數(shù)的方向?qū)?shù)和梯度;曲面和空間曲線的切平面和法線;多元函數(shù)極值或條件極值在幾何、物理與經(jīng)濟(jì)上的應(yīng)用;二元連續(xù)函數(shù)在有界平面區(qū)域上的值和最小值。

        6、多元函數(shù)的積分學(xué)。這部分是數(shù)學(xué)一的內(nèi)容,主要包括二、三重積分在各種坐標(biāo)下的計(jì)算,累次積分交換次序;第一型曲線和曲面積分計(jì)算;第二型(對坐標(biāo))曲線積分計(jì)算、格林公式、斯托克斯公式;第二型(對坐標(biāo))曲面積分計(jì)算、高斯公式;梯度、散度、旋度的綜合計(jì)算;重積分和線面積分應(yīng)用;求面積,體積,重量,重心,引力,變力作功等。

        7、無窮級數(shù)。主要考查級數(shù)的收斂、發(fā)散、絕對收斂和條件收斂;冪級數(shù)的收斂半徑和收斂域;冪級數(shù)的和函數(shù)或數(shù)項(xiàng)級數(shù)的和;函數(shù)展開為冪級數(shù)(包括寫出收斂域)或傅立葉級數(shù);由傅立葉級數(shù)確定其在某點(diǎn)的和(通常要用狄里克雷定理)。

        8、微分方程,主要考查一階微分方程的通解或特解;可降階方程;線性常系數(shù)齊次和非齊次方程的特解或通解;微分方程的建立與求解。

        除了以上分章節(jié)的考查重點(diǎn),還有跨章節(jié)乃至跨科目的`綜合考查題,近幾年出現(xiàn)的有:級數(shù)與積分的綜合題;微積分與微分方程的綜合題;求極限的綜合題;空間解析幾何與多元函數(shù)微分的綜合題;線性代數(shù)與空間解析幾何的綜合題等。

        高考必考高等數(shù)學(xué)學(xué)習(xí)方法

        養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣

        多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

        及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法

        中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。

        有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

        高考必考高等數(shù)學(xué)學(xué)習(xí)技巧

        逐步形成“以我為主”的學(xué)習(xí)模式

        數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。

        要建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識或推理記載下來,以防再犯。爭取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對癥下藥;解答問題完整、推理嚴(yán)密。

        高等數(shù)學(xué)知識點(diǎn)總結(jié) 4

        一、集合有關(guān)概念

        1.集合的含義

        2.集合的中元素的三個(gè)特性:

        (1)元素的確定性如:世界上的山

        (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

        3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        (1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        (2)集合的表示方法:列舉法與描述法。

        注意:常用數(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集:N_或N+

        整數(shù)集:Z

        有理數(shù)集:Q

        實(shí)數(shù)集:R

        1)列舉法:{a,b,c……}

        2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}

        3)語言描述法:例:{不是直角三角形的三角形}

        4)Venn圖:

        4、集合的分類:

        (1)有限集含有有限個(gè)元素的集合

        (2)無限集含有無限個(gè)元素的集合

        (3)空集不含任何元素的集合例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意:有兩種可能

        (1)A是B的一部分,;

        (2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5) 實(shí)

        例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

        即:

       、偃魏我粋(gè)集合是它本身的子集。AíA

       、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

        ③如果AíB,BíC,那么AíC

       、苋绻鸄íB同時(shí)BíA那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的'子集,空集是任何非空集合的真子集。

        4.子集個(gè)數(shù):

        有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

        三、集合的運(yùn)算

        運(yùn)算類型交集并集補(bǔ)集

        定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

        如何養(yǎng)成良好的解題習(xí)慣

        要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。

        在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平 dW 時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。

        數(shù)學(xué)性質(zhì)

        數(shù)學(xué)性質(zhì)是數(shù)學(xué)表觀和內(nèi)在所具有的特征,一種事物區(qū)別于其他事物的屬性。如:平行四邊形的性質(zhì):對邊平行,對邊相等,對角線互相平分,中心對稱圖形。

        高等數(shù)學(xué)知識點(diǎn)

        高等數(shù)學(xué)知識點(diǎn)總結(jié) 5

        第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

        第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。

        第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。

        第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。

        第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

        第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。

        第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。

        高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。針對數(shù)學(xué)高考強(qiáng)調(diào)對基礎(chǔ)知識與基本技能的考查我們一定要全面、系統(tǒng)地復(fù)習(xí)高中數(shù)學(xué)的基礎(chǔ)知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應(yīng)萬變。

        對數(shù)學(xué)思想和方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時(shí)與數(shù)學(xué)知識相結(jié)合。

        對數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識為載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料,側(cè)重體現(xiàn)對知識的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,所有數(shù)學(xué)考試最終落在解題上?季V對數(shù)學(xué)思維能力、運(yùn)算能力、空間想象能力以及實(shí)踐能力和創(chuàng)新意識都提出了十分明確的考查要求,而解題訓(xùn)練是提高能力的必要途徑,所以高考復(fù)習(xí)必須把解題訓(xùn)練落到實(shí)處。訓(xùn)練的內(nèi)容必須根據(jù)考綱的要求精心選題,始終緊扣基礎(chǔ)知識,多進(jìn)行解題的回顧、總結(jié),概括提煉基本思想、基本方法,形成對通性通法的認(rèn)識,真正做到解一題,會一類。

        在臨近高考的數(shù)學(xué)復(fù)習(xí)中,考生們更應(yīng)該從三個(gè)層面上整體把握,同步推進(jìn)。

        1.知識層面

        也就是對每個(gè)章節(jié)、每個(gè)知識點(diǎn)的再認(rèn)識、再記憶、再應(yīng)用。數(shù)學(xué)高考內(nèi)容選修加必修,可歸納為12個(gè)章節(jié),75個(gè)知識點(diǎn)細(xì)化為160個(gè)小知識點(diǎn),而這些知識點(diǎn)又是縱橫交錯(cuò),互相關(guān)聯(lián),是“你中有我,我中有你”的?忌鷤冊谇謇磉@些知識點(diǎn)時(shí),首先是點(diǎn)點(diǎn)必記,不可遺漏。再是建立相關(guān)聯(lián)的網(wǎng)絡(luò),做到取自一點(diǎn),連成一線,使之橫豎縱橫都逐個(gè)、逐級并網(wǎng)連遍,從而牢固記憶、靈活運(yùn)用。

        2.能力層面

        從知識點(diǎn)的掌握到解題能力的'形成,是綜合,更是飛躍,將知識點(diǎn)的內(nèi)容轉(zhuǎn)化為高強(qiáng)的數(shù)學(xué)能力,這要通過大量練習(xí),通過大腦思維、再思維,從而沉淀而得到數(shù)學(xué)思想的精華,就是數(shù)學(xué)解題能力。我們通常說的解題能力、計(jì)算能力、轉(zhuǎn)化問題的能力、閱讀理解題意的能力等等,都來自于千錘百煉的解題之中。

        3.創(chuàng)新層面

        數(shù)學(xué)解題要?jiǎng)?chuàng)新,首先是思想創(chuàng)新,我們稱之為“函數(shù)的思想”、“討論的方法”。函數(shù)是高中數(shù)學(xué)的主線,我們可以用函數(shù)的思想去分析一切數(shù)學(xué)問題,從初等數(shù)學(xué)到高等數(shù)學(xué)、從圖形問題到運(yùn)算問題、從高散型到連續(xù)型、從指數(shù)與對數(shù)、從微分與積分等等,這一切都要突出函數(shù)的思想;另外,現(xiàn)在的高考題常常用增加題目中參數(shù)的方法來提高題目的難度,用于區(qū)別學(xué)生之間解題能力的差異。我們常常應(yīng)對參數(shù)的策略點(diǎn)是消去參數(shù),化未知為已知;或討論參數(shù),分類找出參數(shù)的含義;或分離參數(shù),將參數(shù)問題化成函數(shù)問題,使問題迎刃而解。這些,我稱之為解題創(chuàng)新之舉。

        ☆

        還有一類數(shù)學(xué)解題中的創(chuàng)新,是代換,構(gòu)造新函數(shù)新圖形等等,俗稱代換法、構(gòu)造法,這里有更大的思維跨越,在解題的某一階段有時(shí)出現(xiàn)山窮水盡,無計(jì)可施時(shí),用代換與構(gòu)造,就會使思路豁然開朗、柳暗花明、思路順暢、解答優(yōu)美,體現(xiàn)數(shù)學(xué)之美。常見的代換有變量代換,三角代換,整體代換;常用的構(gòu)造有構(gòu)造函數(shù)、構(gòu)造圖形、構(gòu)造數(shù)列、構(gòu)造不等式、構(gòu)造相關(guān)模型等等。

        ☆

        總之,數(shù)學(xué)是一門規(guī)律性強(qiáng)、邏輯結(jié)構(gòu)嚴(yán)密的學(xué)科,它有規(guī)律、有模型、有式子、有圖形,只要我們掌握了它的規(guī)律、看清了模型、了解了式子、記住了圖形,數(shù)學(xué)就會變成一門簡單而有趣的科學(xué)。這種戰(zhàn)略上的藐視與戰(zhàn)術(shù)上的重視,將會使考生們超常發(fā)揮,取得優(yōu)異的成績。

        高等數(shù)學(xué)學(xué)習(xí)方法

        1.必須熟悉各種基本題型并掌握其解法。

        課本上的每一道練習(xí)題,都是針對一個(gè)知識點(diǎn)出的,是最基本的題目,必須熟練掌握;課外的習(xí)題,也有許多基本題型,其運(yùn)用方法較多,針對性也強(qiáng),應(yīng)該能夠迅速做出。許多綜合題只是若干個(gè)基本題的有機(jī)結(jié)合,基本題掌握了,不愁解不了它們。

        2.在解題過程中有意識地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢。

        數(shù)學(xué)是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時(shí)間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的思維定勢,這時(shí)在解這一類的題目時(shí)就易如反掌了;同時(shí),掌握了更多的思維方法,為做綜合題奠定了一定的基礎(chǔ)。

        3.多做綜合題。

        綜合題,由于用到的知識點(diǎn)較多,頗受命題人青睞。做綜合題也是檢驗(yàn)自己學(xué)習(xí)成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補(bǔ)不足,使自己的數(shù)學(xué)水平不斷提高!岸嘧鼍毩(xí)”要長期堅(jiān)持,每天都要做幾道,時(shí)間長了才會有明顯的效果和較大的收獲。

        高等數(shù)學(xué)學(xué)習(xí)技巧

        初中數(shù)學(xué)的快速記憶法之歌訣記憶

        就是把要記憶的數(shù)學(xué)知識編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對準(zhǔn)頂點(diǎn),零線對著一邊,另一邊看度數(shù)!痹偃,小數(shù)點(diǎn)位置移動(dòng)引起數(shù)的大小變化,“小數(shù)點(diǎn)請你跟我走,走路先要找準(zhǔn)‘左’和‘右’;橫撇帶口是個(gè)you,擴(kuò)大向you走走走;橫撇加個(gè)zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數(shù)位不夠找‘0’拉拉鉤。”采用這種方法來記憶,學(xué)生不僅喜歡記,而且記得牢。

      【高等數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

      高等數(shù)學(xué)知識點(diǎn)總結(jié)11-03

      復(fù)數(shù)知識點(diǎn)總結(jié)12-17

      數(shù)的知識點(diǎn)總結(jié)06-22

      電路知識點(diǎn)總結(jié)06-13

      向量知識點(diǎn)總結(jié)04-03

      概率知識點(diǎn)總結(jié)04-03

      生物知識點(diǎn)總結(jié)03-03

      語文知識點(diǎn)總結(jié)05-18

      生物知識點(diǎn)總結(jié)11-15

      函數(shù)知識點(diǎn)總結(jié)06-09