亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      時(shí)間:2022-05-25 00:24:20 總結(jié) 投訴 投稿

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        總結(jié)是對(duì)取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評(píng)價(jià)與描述的一種書面材料,通過(guò)它可以全面地、系統(tǒng)地了解以往的學(xué)習(xí)和工作情況,為此要我們寫一份總結(jié)。總結(jié)怎么寫才是正確的呢?下面是小編精心整理的最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

        三角函數(shù)

        注意歸一公式、誘導(dǎo)公式的正確性

        數(shù)列題

        1.證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

        2.最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的'假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

        3.證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

        立體幾何題

        1.證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

        2.求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

        3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

        概率問(wèn)題

        1.搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

        2.搞清是什么概率模型,套用哪個(gè)公式;

        3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

        4.求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);5.注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;6.注意放回抽樣,不放回抽樣;

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

        a(1)=a,a(n)為公差為r的等差數(shù)列

        通項(xiàng)公式:

        a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

        可用歸納法證明。

        n=1時(shí),a(1)=a+(1-1)r=a。成立。

        假設(shè)n=k時(shí),等差數(shù)列的`通項(xiàng)公式成立。a(k)=a+(k-1)r

        則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

        通項(xiàng)公式也成立。

        因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。

        求和公式:

        S(n)=a(1)+a(2)+...+a(n)

        =a+(a+r)+...+[a+(n-1)r]

        =na+r[1+2+...+(n-1)]

        =na+n(n-1)r/2

        同樣,可用歸納法證明求和公式。

        a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

        通項(xiàng)公式:

        a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

        可用歸納法證明等比數(shù)列的通項(xiàng)公式。

        求和公式:

        S(n)=a(1)+a(2)+...+a(n)

        =a+ar+...+ar^(n-1)

        =a[1+r+...+r^(n-1)]

        r不等于1時(shí),

        S(n)=a[1-r^n]/[1-r]

        r=1時(shí),

        S(n)=na.

        同樣,可用歸納法證明求和公式。

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

        1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.

        2.在應(yīng)用條件時(shí),易A忽略是空集的情況

        3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?

        4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

        5.你知道“否命題”與“命題的否定形式”的區(qū)別.

        6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則.

        7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱.

        8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.

        9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)

        10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法

        11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.

        12.求函數(shù)的值域必須先求函數(shù)的定義域。

        13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你掌握了嗎?

        14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

        (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

        15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

        16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

        17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

        18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

        19.絕對(duì)值不等式的解法及其幾何意義是什么?

        20.解分式不等式應(yīng)注意什么問(wèn)題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

        21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

        22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.

        23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a<0.

        24.解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?

        25.在“已知,求”的問(wèn)題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

        26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的所有項(xiàng)的和必定存在?

        27.數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問(wèn)題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

        28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。

        29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

        30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

        31.在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

        32.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)

        33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是

        34.你還記得某些特殊角的.三角函數(shù)值嗎?

        35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎?

        36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:

        (1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.

        (2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.

        (3)點(diǎn)的平移公式:點(diǎn)P(x,y)按向量平移到點(diǎn)P(x,y),則x=x+hy=y+k.

        37.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)

        38.形如的周期都是,但的周期為。

        39.正弦定理時(shí)易忘比值還等于2R。

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

        1.函數(shù)的奇偶性

        (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

        (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

        (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

        (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

        (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

        2.復(fù)合函數(shù)的有關(guān)問(wèn)題

        (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的`定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

        (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

        3.函數(shù)圖像(或方程曲線的對(duì)稱性)

        (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

        (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

        (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

        (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

        (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

        (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

        4.函數(shù)的周期性

        (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

        (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

        (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

        (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

        (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

        (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

        5.方程k=f(x)有解k∈D(D為f(x)的值域);

        6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

        7.(1)(a>0,a≠1,b>0,n∈R+);

        (2)logaN=(a>0,a≠1,b>0,b≠1);

        (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

        (4)alogaN=N(a>0,a≠1,N>0);

        8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

        (1)A中元素必須都有象且;

        (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

        9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

        10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

        (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

        (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

        (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

        (4)周期函數(shù)不存在反函數(shù);

        (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

        (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

        11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

        二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

        12.依據(jù)單調(diào)性

        利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題;

        13.恒成立問(wèn)題的處理方法

        (1)分離參數(shù)法;

        (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

        1.數(shù)列的定義、分類與通項(xiàng)公式

        (1)數(shù)列的定義:

       、贁(shù)列:按照一定順序排列的一列數(shù).

       、跀(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).

        (2)數(shù)列的分類:

        分類標(biāo)準(zhǔn)類型滿足條件

        項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限

        無(wú)窮數(shù)列項(xiàng)數(shù)無(wú)限

        項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N_

        遞減數(shù)列an+1

        常數(shù)列an+1=an

        (3)數(shù)列的通項(xiàng)公式:

        如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.

        2.數(shù)列的遞推公式

        如果已知數(shù)列{an}的首項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與它的前一項(xiàng)an-1(n≥2)(或前幾項(xiàng))間的關(guān)系可用一個(gè)公式來(lái)表示,那么這個(gè)公式叫數(shù)列的遞推公式.

        3.對(duì)數(shù)列概念的理解

        (1)數(shù)列是按一定“順序”排列的一列數(shù),一個(gè)數(shù)列不僅與構(gòu)成它的`“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無(wú)序性.因此,若組成兩個(gè)數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個(gè)數(shù)列.

        (2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.

        4.數(shù)列的函數(shù)特征

        數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集N_(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項(xiàng)公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N_).

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

        1、直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        2、直線的斜率

       、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

       、谶^(guò)兩點(diǎn)的直線的`斜率公式:

        注意下面四點(diǎn):

        (1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無(wú)關(guān);

        (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

        (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

        3、直線方程

        點(diǎn)斜式:

        直線斜率k,且過(guò)點(diǎn)。

        注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

      最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

        一、函數(shù)的定義域的常用求法:

        1、分式的分母不等于零;

        2、偶次方根的被開方數(shù)大于等于零;

        3、對(duì)數(shù)的真數(shù)大于零;

        4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的`底數(shù)大于零且不等于1;

        5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

        6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

        二、函數(shù)的解析式的常用求法:

        1、定義法;

        2、換元法;

        3、待定系數(shù)法;

        4、函數(shù)方程法;

        5、參數(shù)法;

        6、配方法

        三、函數(shù)的值域的常用求法:

        1、換元法;

        2、配方法;

        3、判別式法;

        4、幾何法;

        5、不等式法;

        6、單調(diào)性法;

        7、直接法

        四、函數(shù)的最值的常用求法:

        1、配方法;

        2、換元法;

        3、不等式法;

        4、幾何法;

        5、單調(diào)性法

        五、函數(shù)單調(diào)性的常用結(jié)論:

        1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。

        2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。

        3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

        4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

        5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

        六、函數(shù)奇偶性的常用結(jié)論:

        1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。

        2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

        3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

        4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。

        5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。

      【最新高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)最新06-17

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)最新6篇06-17

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-21

      高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)06-26

      高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)06-17

      最新高三物理知識(shí)點(diǎn)總結(jié)06-11

      【精】高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-25

      【熱門】高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-25

      【熱】高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-25

      【推薦】高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-25