亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高三數(shù)學知識點總結

      時間:2022-07-25 02:37:07 總結 投訴 投稿

      【精】高三數(shù)學知識點總結

        總結是對取得的成績、存在的問題及得到的經驗和教訓等方面情況進行評價與描述的一種書面材料,它可以使我們更有效率,不如靜下心來好好寫寫總結吧。你想知道總結怎么寫嗎?以下是小編為大家收集的高三數(shù)學知識點總結,歡迎大家分享。

      【精】高三數(shù)學知識點總結

      高三數(shù)學知識點總結1

        1、定義:

        用符號〉,=,〈號連接的式子叫不等式。

        2、性質:

        ①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

        ②不等式的.兩邊都乘以或者除以一個正數(shù),不等號方向不變。

       、鄄坏仁降膬蛇叾汲艘曰虺酝粋負數(shù),不等號方向相反。

        3、分類:

       、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦剑缓幸粋未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

       、谝辉淮尾坏仁浇M:

        a、關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

        b、一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

        4、考點:

        ①解一元一次不等式(組)

       、诟鶕(jù)具體問題中的數(shù)量關系列不等式(組)并解決簡單實際問題

       、塾脭(shù)軸表示一元一次不等式(組)的解集

      高三數(shù)學知識點總結2

        ①正棱錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。

        ②正棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形。

       、翘厥饫忮F的頂點在底面的射影位置:

       、倮忮F的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心。

       、诶忮F的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。

        ③棱錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心。

       、芾忮F的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心。

       、萑忮F有兩組對棱垂直,則頂點在底面的射影為三角形垂心。

       、奕忮F的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心。

       、呙總四面體都有外接球,球心0是各條棱的`中垂面的交點,此點到各頂點的距離等于球半徑;

        ⑧每個四面體都有內切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑。

        [注]:

        i、各個側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個側面的等腰三角形不知是否全等)

        ii、若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直。

        簡證:AB⊥CD,AC⊥BD

        BC⊥AD。令得,已知則。

        iii、空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形。

        iv、若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形。

        簡證:取AC中點,則平面90°易知EFGH為平行四邊形

        EFGH為長方形。若對角線等,則為正方形。

      高三數(shù)學知識點總結3

        1.等差數(shù)列的定義

        如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

        2.等差數(shù)列的`通項公式

        若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

        3.等差中項

        如果A=(a+b)/2,那么A叫做a與b的等差中項.

        4.等差數(shù)列的常用性質

        (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

        (2)若{an}為等差數(shù)列,且m+n=p+q,

        則am+an=ap+aq(m,n,p,q∈N_).

        (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

        (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

        (5)S2n-1=(2n-1)an.

        (6)若n為偶數(shù),則S偶-S奇=nd/2;

        若n為奇數(shù),則S奇-S偶=a中(中間項).

        注意:

        一個推導

        利用倒序相加法推導等差數(shù)列的前n項和公式:

        Sn=a1+a2+a3+…+an,①

        Sn=an+an-1+…+a1,②

       、+②得:Sn=n(a1+an)/2

        兩個技巧

        已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設元.

        (1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….

        (2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進行對稱設元.

        四種方法

        等差數(shù)列的判斷方法

        (1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

        (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

        (3)通項公式法:驗證an=pn+q;

        (4)前n項和公式法:驗證Sn=An2+Bn.

        注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

      高三數(shù)學知識點總結4

        軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

        一、求動點的軌跡方程的基本步驟。

        1、建立適當?shù)淖鴺讼,設出動點M的坐標;

        2、寫出點M的集合;

        3、列出方程=0;

        4、化簡方程為最簡形式;

        5、檢驗。

        二、求動點的.軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

        1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

        2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

        3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

        4、參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

        5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

        求動點軌跡方程的一般步驟:

       、俳ㄏ怠⑦m當?shù)淖鴺讼?

       、谠O點——設軌跡上的任一點P(x,y);

       、哿惺健谐鰟狱cp所滿足的關系式;

        ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

       、葑C明——證明所求方程即為符合條件的動點軌跡方程。

      高三數(shù)學知識點總結5

        高考數(shù)學必考知識點歸納必修一:

        1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質及應用(比較抽象,較難理解)

        高考數(shù)學必考知識點歸納必修二:

        1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。

        這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考占22---27分

        2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題

        3、圓方程

        高考數(shù)學必考知識點歸納必修三:

        1、算法初步:高考必考內容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內容,09年理科占到15分,文科數(shù)學占到5分。

        高考數(shù)學必考知識點歸納必修四:

        1、三角函數(shù):(圖像、性質、高中重難點,)必考大題:15---20分,并且經常和其他函數(shù)混合起來考查。

        2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結合命題。09年理科占到5分,文科占到13分。

        高考數(shù)學必考知識點歸納必修五:

        1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結合求最值、解集。

        高考數(shù)學必考知識點歸納文科選修:

        選修1--1:重點:高考占30分

        1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導數(shù)、導數(shù)的'應用(高考必考)

        選修1--2:

        1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復數(shù):(新課標比老課本難的多,高考必考內容)。

        高考數(shù)學必考知識點歸納理科選修:

        選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)選修2--2:1、導數(shù)與微積分2、推理證明:一般不考3、復數(shù)

        選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統(tǒng)計:

        高考的知識板塊

        集合與簡單邏輯:5分或不考

        函數(shù):高考60分:①、指數(shù)函數(shù)②對數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無函數(shù)表達式,不易理解,難點)

        平面向量與解三角形

        立體幾何:22分左右

        不等式:(線性規(guī)則)5分必考

        數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結合命題

        平面解析幾何:(30分左右)

        計算原理:10分左右

        概率統(tǒng)計:12分----17分

        復數(shù):5分

      高三數(shù)學知識點總結6

        1、三類角的求法:

       、僬页龌蜃鞒鲇嘘P的角。

       、谧C明其符合定義,并指出所求作的角。

       、塾嬎愦笮。ń庵苯侨切,或用余弦定理)。

        2、正棱柱——底面為正多邊形的直棱柱

        正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

        正棱錐的計算集中在四個直角三角形中:

        3、怎樣判斷直線l與圓C的位置關系?

        圓心到直線的距離與圓的半徑比較。

        直線與圓相交時,注意利用圓的“垂徑定理”。

        4、對線性規(guī)劃問題:

        作出可行域,作出以目標函數(shù)為截距的直線,在可行域內平移直線,求出目標函數(shù)的最值。

        培養(yǎng)興趣是關鍵。學生對數(shù)學產生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

        (1)欣賞數(shù)學的美感

        比如幾何圖形中的對稱、變換前后的不變量、概念的嚴謹、邏輯的嚴密……

        通過對旋轉變換及其不變量的'討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。

       。2)注意到數(shù)學在實際生活中的應用。

        例如和日常生活息息相關的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解、學好數(shù)學,是現(xiàn)代公民的基本素養(yǎng)之一啊

       。3)采用靈活的教學手段,與時俱進。

        利用多種技術手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學生也更容易接受,理解更深。

        (4)適當看一些科普類的書籍和文章。

        比如:學圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質的應用,這方面的文章也不少。

      高三數(shù)學知識點總結7

        第一部分集合

        (1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

       。2)注意:討論的時候不要遺忘了的情況。

        第二部分函數(shù)與導數(shù)

        1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。

        2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導數(shù)法

        3、復合函數(shù)的有關問題

       。1)復合函數(shù)定義域求法:

        ①若f(x)的定義域為〔a,b〕,則復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

       、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

       。2)復合函數(shù)單調性的判定:

       、偈紫葘⒃瘮(shù)分解為基本函數(shù):內函數(shù)與外函數(shù);

       、诜謩e研究內、外函數(shù)在各自定義域內的.單調性;

       、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內的單調性。

        注意:外函數(shù)的定義域是內函數(shù)的值域。

        4、分段函數(shù):值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

        5、函數(shù)的奇偶性

       、藕瘮(shù)的定義域關于原點對稱是函數(shù)具有奇偶性的必要條件;

       、剖瞧婧瘮(shù);

       、鞘桥己瘮(shù);

        ⑷奇函數(shù)在原點有定義,則;

       、稍陉P于原點對稱的單調區(qū)間內:奇函數(shù)有相同的單調性,偶函數(shù)有相反的單調性;

       。6)若所給函數(shù)的解析式較為復雜,應先等價變形,再判斷其奇偶性;

        1、對于函數(shù)f(x),如果對于定義域內任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

        2、對于函數(shù)f(x),如果對于定義域內任意一個x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

        3、一般地,對于函數(shù)y=f(x),定義域內每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關于點(a,b)成中心對稱;

        4、一般地,對于函數(shù)y=f(x),定義域內每一個自變量x都有f(a+x)=f(a—x),則它的圖象關于x=a成軸對稱。

        5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;

        6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則—x也一定是定義域內的一個自變量(即定義域關于原點對稱)。

      高三數(shù)學知識點總結8

        復數(shù)的概念:

        形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。

        復數(shù)的表示:

        復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。

        復數(shù)的幾何意義:

        (1)復平面、實軸、虛軸:

        點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

        (2)復數(shù)的幾何意義:復數(shù)集C和復平面內所有的'點所成的集合是一一對應關系,即

        這是因為,每一個復數(shù)有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數(shù)和它對應。

        這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。

        復數(shù)的模:

        復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=

        虛數(shù)單位i:

        (1)它的平方等于-1,即i2=-1;

        (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

        (3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

        (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

        復數(shù)模的性質:

        復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關系:

        對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。

      高三數(shù)學知識點總結9

        Card(AB)=card(A)+card(B)-card(AB)

        (1)命題

        原命題若p則q

        逆命題若q則p

        否命題若p則q

        逆否命題若q,則p

        (2)AB,A是B成立的充分條件

        BA,A是B成立的必要條件

        AB,A是B成立的充要條件

        1.集合元素具有①確定性;②互異性;③無序性

        2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

        (3)集合的運算

        ①A∩(B∪C)=(A∩B)∪(A∩C)

       、贑u(A∩B)=CuA∪CuB

        Cu(A∪B)=CuA∩CuB

        (4)集合的性質

        n元集合的字集數(shù):2n

        真子集數(shù):2n-1;

        非空真子集數(shù):2n-2

        高三數(shù)學知識點2

        兩個復數(shù)相等的定義:

        如果兩個復數(shù)的實部和虛部分別相等,那么我們就說這兩個復數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

        a=c,b=d。特殊地,a,b∈R時,a+bi=0

        a=0,b=0.

        復數(shù)相等的充要條件,提供了將復數(shù)問題化歸為實數(shù)問題解決的途徑。

        復數(shù)相等特別提醒:

        一般地,兩個復數(shù)只能說相等或不相等,而不能比較大小。如果兩個復數(shù)都是實數(shù),就可以比較大小,也只有當兩個復數(shù)全是實數(shù)時才能比較大小。

        解復數(shù)相等問題的`方法步驟:

        (1)把給的復數(shù)化成復數(shù)的標準形式;

        (2)根據(jù)復數(shù)相等的充要條件解之。

      高三數(shù)學知識點總結10

        考點一:集合與簡易邏輯

        集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯(lián)結詞、“充要關系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學解題過程和邏輯推理。

        考點二:函數(shù)與導數(shù)

        函數(shù)是高考的重點內容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應用等,分值約為10分,解答題與導數(shù)交匯在一起考查函數(shù)的性質。導數(shù)部分一方面考查導數(shù)的運算與導數(shù)的幾何意義,另一方面考查導數(shù)的簡單應用,如求函數(shù)的單調區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導數(shù)的綜合應用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。

        考點三:三角函數(shù)與平面向量

        一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數(shù)的'圖像、性質或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結合思想在解題中的應用。向量重點考查平面向量數(shù)量積的概念及應用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結合,解決角度、垂直、共線等問題是“新熱點”題型、

        考點四:數(shù)列與不等式

        不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導數(shù)等解答題中進行考查、在選擇、填空題中考查等差或等比數(shù)列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目、

        考點五:立體幾何與空間向量

        一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

        考點六:解析幾何

        一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

        考點七:算法復數(shù)推理與證明

        高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”、考查的熱點是流程圖的識別與算法語言的閱讀理解、算法與數(shù)列知識的網絡交匯命題是考查的主流、復數(shù)考查的重點是復數(shù)的有關概念、復數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學歸納法可能作為解答題的一小問、

      高三數(shù)學知識點總結11

        三角函數(shù)。

        注意歸一公式、誘導公式的正確性。

        數(shù)列題。

        1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;

        2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;

        3、證明不等式時,有時構造函數(shù),利用函數(shù)單調性很簡單

        立體幾何題。

        1、證明線面位置關系,一般不需要去建系,更簡單;

        2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

        3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系。

        概率問題。

        1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);

        2、搞清是什么概率模型,套用哪個公式;

        3、記準均值、方差、標準差公式;

        4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);

        5、注意計數(shù)時利用列舉、樹圖等基本方法;

        6、注意放回抽樣,不放回抽樣;

        正弦、余弦典型例題。

        1、在△ABC中,∠C=90°,a=1,c=4,則sinA的.值為

        2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

        3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

        4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

        5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

        正弦、余弦解題訣竅。

        1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

        2、已知三邊,或兩邊及其夾角用余弦定理

        3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

      高三數(shù)學知識點總結12

        1、圓柱體:

        表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

        2、圓錐體:

        表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

        3、正方體

        a-邊長,S=6a2,V=a3

        4、長方體

        a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

        5、棱柱

        S-底面積h-高V=Sh

        6、棱錐

        S-底面積h-高V=Sh/3

        7、棱臺

        S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

        8、擬柱體

        S1-上底面積,S2-下底面積,S0-中截面積

        h-高,V=h(S1+S2+4S0)/6

        9、圓柱

        r-底半徑,h-高,C—底面周長

        S底—底面積,S側—側面積,S表—表面積C=2πr

        S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

        10、空心圓柱

        R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

        11、直圓錐

        r-底半徑h-高V=πr^2h/3

        12、圓臺

        r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

        13、球

        r-半徑d-直徑V=4/3πr^3=πd^3/6

        14、球缺

        h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

        15、球臺

        r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

        16、圓環(huán)體

        R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑

        V=2π2Rr2=π2Dd2/4

        17、桶狀體

        D-桶腹直徑d-桶底直徑h-桶高

        V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

        V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

      高三數(shù)學知識點總結13

        任一x=A,x=B,記做AB

        AB,BAA=B

        AB={x|x=A,且x=B}

        AB={x|x=A,或x=B}

        Card(AB)=card(A)+card(B)—card(AB)

       。1)命題

        原命題若p則q

        逆命題若q則p

        否命題若p則q

        逆否命題若q,則p

        (2)AB,A是B成立的充分條件

        BA,A是B成立的'必要條件

        AB,A是B成立的充要條件

        1、集合元素具有

       、俅_定性;

       、诨ギ愋裕

       、蹮o序性

        2、集合表示方法

        ①列舉法;

       、诿枋龇;

       、垌f恩圖;

        ④數(shù)軸法

       。3)集合的運算

       、貯∩(B∪C)=(A∩B)∪(A∩C)

        ②Cu(A∩B)=CuA∪CuB

        Cu(A∪B)=CuA∩CuB

       。4)集合的性質

        n元集合的字集數(shù):2n

        真子集數(shù):2n—1;

        非空真子集數(shù):2n—2

      高三數(shù)學知識點總結14

        第一部分集合

       。1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

       。2)注意:討論的時候不要遺忘了的情況。

        第二部分函數(shù)與導數(shù)

        1、映射:注意

       、俚谝粋集合中的元素必須有象;

        ②一對一,或多對一。

        2、函數(shù)值域的求法:

       、俜治龇;

       、谂浞椒;

       、叟袆e式法;

       、芾煤瘮(shù)單調性;

       、輷Q元法;

       、蘩镁挡坏仁;

       、呃脭(shù)形結合或幾何意義(斜率、距離、絕對值的意義等);

       、嗬煤瘮(shù)有界性;

       、釋(shù)法

        3、復合函數(shù)的有關問題

        (1)復合函數(shù)定義域求法:

       、偃鬴(x)的定義域為〔a,b〕,則復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

       、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的`值域。

        (2)復合函數(shù)單調性的判定:

       、偈紫葘⒃瘮(shù)分解為基本函數(shù):內函數(shù)與外函數(shù);

       、诜謩e研究內、外函數(shù)在各自定義域內的單調性;

       、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內的單調性。

        注意:外函數(shù)的定義域是內函數(shù)的值域。

        4、分段函數(shù):值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

        5、函數(shù)的奇偶性

       。1)函數(shù)的定義域關于原點對稱是函數(shù)具有奇偶性的必要條件;

       。2)是奇函數(shù);

       。3)是偶函數(shù);

       。4)奇函數(shù)在原點有定義,則;

        (5)在關于原點對稱的單調區(qū)間內:奇函數(shù)有相同的單調性,偶函數(shù)有相反的單調性;

        (6)若所給函數(shù)的解析式較為復雜,應先等價變形,再判斷其奇偶性;

      高三數(shù)學知識點總結15

        1、函數(shù)的奇偶性

        (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

        (2)若f(x)是奇函數(shù),0在其定義域內,則f(0)=0(可用于求參數(shù));

        (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

        (4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;

        (5)奇函數(shù)在對稱的單調區(qū)間內有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內有相反的單調性;

        2、復合函數(shù)的有關問題

        (1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

        (2)復合函數(shù)的單調性由“同增異減”判定;

        3、函數(shù)圖像(或方程曲線的`對稱性)

        (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

        (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

        (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

        (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

        (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;

        (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;

        4、函數(shù)的周期性

        (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

        (2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

        (3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

        (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

        (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

        (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

        5、方程k=f(x)有解k∈D(D為f(x)的值域);

        6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

        7、(1)(a>0a≠1,b>0,n∈R+);

        (2)logaN=(a>0,a≠1,b>0,b≠1);

        (3)logab的符號由口訣“同正異負”記憶;

        (4)alogaN=N(a>0,a≠1,N>0);

        8、判斷對應是否為映射時,抓住兩點:

        (1)A中元素必須都有象且;

        (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

        9、能熟練地用定義證明函數(shù)的單調性,求反函數(shù),判斷函數(shù)的奇偶性。

        10、對于反函數(shù),應掌握以下一些結論:

        (1)定義域上的單調函數(shù)必有反函數(shù);

        (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

        (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

        (4)周期函數(shù)不存在反函數(shù);

        (5)互為反函數(shù)的兩個函數(shù)具有相同的單調性;

        (6)y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

        11、處理二次函數(shù)的問題勿忘數(shù)形結合

        二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;

        12、依據(jù)單調性

        利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

        13、恒成立問題的處理方法

        (1)分離參數(shù)法;

        (2)轉化為一元二次方程的根的分布列不等式(組)求解;

        a(1)=a,a(n)為公差為r的等差數(shù)列

        通項公式:

        a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

        可用歸納法證明。

        n=1時,a(1)=a+(1-1)r=a。成立。

        假設n=k時,等差數(shù)列的通項公式成立。a(k)=a+(k-1)r

        則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

        通項公式也成立。

        因此,由歸納法知,等差數(shù)列的通項公式是正確的。

        求和公式:

        S(n)=a(1)+a(2)+、、、+a(n)

        =a+(a+r)+、、、+[a+(n-1)r]

        =na+r[1+2+、、、+(n-1)]

        =na+n(n-1)r/2

        同樣,可用歸納法證明求和公式。

        a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

        通項公式:

        a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

        可用歸納法證明等比數(shù)列的通項公式。

        求和公式:

        S(n)=a(1)+a(2)+、、、+a(n)

        =a+ar+、、、+ar^(n-1)

        =a[1+r+、、、+r^(n-1)]

        r不等于1時,

        S(n)=a[1-r^n]/[1-r]

        r=1時,

        S(n)=na、

        同樣,可用歸納法證明求和公式。

      【高三數(shù)學知識點總結】相關文章:

      高三數(shù)學知識點總結09-21

      高三數(shù)學重要知識點總結11-05

      高三數(shù)學復習知識點總結10-21

      高三數(shù)學知識點歸納總結04-20

      高三數(shù)學知識點總結最新10-21

      【熱門】高三數(shù)學知識點總結12-29

      【熱】高三數(shù)學知識點總結12-29

      【推薦】高三數(shù)學知識點總結12-29

      高三數(shù)學知識點總結【熱】08-26