亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      時(shí)間:2022-11-02 07:53:59 總結(jié) 投訴 投稿

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),通過(guò)它可以全面地、系統(tǒng)地了解以往的學(xué)習(xí)和工作情況,快快來(lái)寫一份總結(jié)吧。總結(jié)怎么寫才是正確的呢?下面是小編整理的高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

        一、直線與圓:

        1、直線的傾斜角的范圍是

        在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;

        2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα。

        過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

        3、直線方程:⑴點(diǎn)斜式:直線過(guò)點(diǎn)斜率為,則直線方程為,

        ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

        4、,①∥,;②。

        直線與直線的位置關(guān)系:

       。1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=0

        5、點(diǎn)到直線的距離公式;

        兩條平行線與的距離是

        6、圓的標(biāo)準(zhǔn)方程:。⑵圓的一般方程:

        注意能將標(biāo)準(zhǔn)方程化為一般方程

        7、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線。

        8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題。①相離②相切③相交

        9、解決直線與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長(zhǎng)

        二、圓錐曲線方程:

        1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;

        2、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線或c2=a2+b2

        3、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;

        4、直線被圓錐曲線截得的弦長(zhǎng)公式:

        5、注意解析幾何與向量結(jié)合問(wèn)題:1、,。(1);(2)。

        2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即

        3、模的計(jì)算:|a|=。算?梢韵人阆蛄康钠椒

        4、向量的運(yùn)算過(guò)程中完全平方公式等照樣適用:

        三、直線、平面、簡(jiǎn)單幾何體:

        1、學(xué)會(huì)三視圖的分析:

        2、斜二測(cè)畫法應(yīng)注意的地方:

       。1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時(shí),把它畫成對(duì)應(yīng)軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

        3、表(側(cè))面積與體積公式:

       、胖w:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

        ⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

        ⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

       、惹蝮w:①表面積:S=;②體積:V=

        4、位置關(guān)系的.證明(主要方法):注意立體幾何證明的書(shū)寫

       。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

       。2)平面與平面平行:①線面平行面面平行。

       。3)垂直問(wèn)題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

        5、求角:(步驟——Ⅰ。找或作角;Ⅱ。求角)

       、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;

        ⑵直線與平面所成的角:直線與射影所成的角

        四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問(wèn)題、曲線切線問(wèn)題)

        1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作。

        2、導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

       、賙=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

        3、常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;

       、;⑥;⑦;⑧。

        4、導(dǎo)數(shù)的四則運(yùn)算法則:

        5、導(dǎo)數(shù)的應(yīng)用:

       。1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

        注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

        (2)求極值的步驟:

       、偾髮(dǎo)數(shù);

       、谇蠓匠痰母

       、哿斜恚簷z驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

       。3)求可導(dǎo)函數(shù)最大值與最小值的步驟:

        ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。

        五、常用邏輯用語(yǔ):

        1、四種命題:

        ⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

        注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。

        2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是。命題“或”的否定是“且”;“且”的否定是“或”。

        3、邏輯聯(lián)結(jié)詞:

       、徘遥╝nd):命題形式pq;pqpqpqp

       、苹颍╫r):命題形式pq;真真真真假

        ⑶非(not):命題形式p。真假假真假

        假真假真真

        假假假假真

        “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

        “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

        “非命題”的真假特點(diǎn)是“一真一假”

        4、充要條件

        由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

        5、全稱命題與特稱命題:

        短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱命題。

        短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào)表示,含有存在量詞的命題,叫做存在性命題。

        全稱命題p:;全稱命題p的否定p:。

        特稱命題p:;特稱命題p的否定p:

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

        第一章:集合和函數(shù)的基本概念,錯(cuò)誤基本都集中在空集這一概念上,而每次考試基本都會(huì)在選填題上涉及這一概念,一個(gè)不小心就是五分沒(méi)了。次一級(jí)的知識(shí)點(diǎn)就是集合的韋恩圖,會(huì)畫圖,集合的“并、補(bǔ)、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。

        第二章:基本初等函數(shù):指數(shù)、對(duì)數(shù)、冪函數(shù)三大函數(shù)的運(yùn)算性質(zhì)及圖像。函數(shù)的幾大要素和相關(guān)考點(diǎn)基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數(shù)的運(yùn)算公式,多記多用,多做一點(diǎn)練習(xí)基本就沒(méi)多大問(wèn)題。函數(shù)圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì)熟練的畫出函數(shù)圖像,定義域、值域、零點(diǎn)等等。對(duì)于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時(shí)圖像的不同及函數(shù)值的大小關(guān)系,這也是?汲ee(cuò)點(diǎn)。另外指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的對(duì)立關(guān)系及其相互之間要怎樣轉(zhuǎn)化問(wèn)題也要了解清楚。

        第三章:函數(shù)的'應(yīng)用。主要就是函數(shù)與方程的結(jié)合。其實(shí)就是的實(shí)根,即函數(shù)的零點(diǎn),也就是函數(shù)圖像與X軸的交點(diǎn)。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì)在這三者之間的靈活轉(zhuǎn)化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計(jì)算加得必有零點(diǎn),連續(xù)函數(shù)在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習(xí)強(qiáng)化。這二次函數(shù)的零點(diǎn)的Δ判別法,這個(gè)倒不算難。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

        1.有向線段的定義

        線段的端點(diǎn)A為始點(diǎn),端點(diǎn)B為終點(diǎn),這時(shí)線段AB具有射線AB的方向.像這樣,具有方向的線段叫做有向線段.記作:.

        2.有向線段的三要素:有向線段包含三個(gè)要素:始點(diǎn)、方向和長(zhǎng)度.

        3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個(gè)要素:大小和方向.

        (2)向量的表示方法:①用兩個(gè)大寫的英文字母及前頭表示,有向線段來(lái)表示向量時(shí),也稱其為向量.書(shū)寫時(shí),則用帶箭頭的小寫字母,,,來(lái)表示.

        4.向量的長(zhǎng)度(模):如果向量=,那么有向線段的長(zhǎng)度表示向量的大小,叫做向量的長(zhǎng)度(或模),記作||.

        5.相等向量:如果兩個(gè)向量和的方向相同且長(zhǎng)度相等,則稱和相等,記作:=.

        6.相反向量:與向量等長(zhǎng)且方向相反的向量叫做的相反向量,記作:-.

        7.向量平行(共線):如果兩個(gè)向量方向相同或相反,則稱這兩個(gè)向量平行,向量平行也稱向量共線.向量平行于向量,記作//.規(guī)定: //.

        8.零向量:長(zhǎng)度等于零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由于零向量方向的特殊性,解答問(wèn)題時(shí),一定要看清題目中是零向量還是非零向量.

        9.單位向量:長(zhǎng)度等于1的.向量叫做單位向量.

        10.向量的加法運(yùn)算:

        (1)向量加法的三角形法則

        11.向量的減法運(yùn)算

        12、兩向量的和差的模與兩向量模的和差之間的關(guān)系

        對(duì)于任意兩個(gè)向量,,都有|||-|||||+||.

        13.?dāng)?shù)乘向量的定義:

        實(shí)數(shù)和向量的乘積是一個(gè)向量,這種運(yùn)算叫做數(shù)乘向量,記作.

        向量的長(zhǎng)度與方向規(guī)定為:(1)||=|

        (2)當(dāng)0時(shí),與方向相同;當(dāng)0時(shí),與方向相反.

        (3)當(dāng)=0時(shí),當(dāng)=時(shí),=.

        14.?dāng)?shù)乘向量的運(yùn)算律:(1))= (結(jié)合律)

        (2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

        15.平行向量基本定理

        如果向量,則//的充分必要條件是,存在唯一的實(shí)數(shù),使得=.

        如果與不共線,若m=n,則m=n=0.

        16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.

        =||,即==(,)

        17.線段中點(diǎn)的向量表達(dá)式

        點(diǎn)M是線段AB的中點(diǎn),O是平面內(nèi)任意一點(diǎn),則=(+).

        18.平面向量的直角坐標(biāo)運(yùn)算:如果=(a1,a2),=(b1,b2),則

        +=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

        19.利用兩點(diǎn)表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).

        20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則

        =a1=b1且a2=b2.

        //a1b2-a2b1=0.特別地,如果b10,b20,則// =.

        21.向量的長(zhǎng)度公式:若=(a1,a2),則||=.

        22.平面上兩點(diǎn)間的距離公式:若A(x1,y1),B(x2,y2),則||=.

        23.中點(diǎn)公式

        若點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),點(diǎn)M(x,y)是線段AB的中點(diǎn),則x=,y= .

        24.重心公式

        在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則

        x=,y=

        25.(1)兩個(gè)向量夾角的取值范圍是[0,p],即0,p.

        當(dāng)=0時(shí),與同向;當(dāng)=p時(shí),與反向

        當(dāng)= 時(shí),與垂直,記作.

        (3)向量的內(nèi)積定義:=||||cos.

        其中,||cos叫做向量在向量方向上的正射影的數(shù)量.規(guī)定=0.

        (4)內(nèi)積的幾何意義

        與的內(nèi)積的幾何意義是的模與在方向上的正射影的數(shù)量,或的模與在 方向上的正射影數(shù)量的乘積

        當(dāng)0,90時(shí),0;=90時(shí),

        90時(shí),0.

        26.向量?jī)?nèi)積的運(yùn)算律:

        (1)交換率

        (2)數(shù)乘結(jié)合律

        (3)分配律

        (4)不滿足組合律

        27.向量?jī)?nèi)積滿足乘法公式

        29.向量?jī)?nèi)積的應(yīng)用:

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

        一、直線與圓:

        1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;

        2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

        3、直線方程:

        (1)點(diǎn)斜式:直線過(guò)點(diǎn)斜率為,則直線方程為

       。2)斜截式:直線在軸上的截距為和斜率,則直線方程為

        4、直線與直線的位置關(guān)系:

       。1)平行A1/A2=B1/B2注意檢驗(yàn)

       。2)垂直A1A2+B1B2=0

        5、點(diǎn)到直線的距離公式;

        兩條平行線與的距離是

        6、圓的標(biāo)準(zhǔn)方程:圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程

        7、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

        8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.①相離②相切③相交

        9、解決直線與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長(zhǎng)

        二、圓錐曲線方程:

        1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;

        2、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線或c2=a2+b2

        3、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;

        4、直線被圓錐曲線截得的弦長(zhǎng)公式:

        三、直線、平面、簡(jiǎn)單幾何體:

        1、學(xué)會(huì)三視圖的分析:

        2、斜二測(cè)畫法應(yīng)注意的地方:

        (1)在已知圖形中取互相垂直的'軸Ox、Oy。畫直觀圖時(shí),把它畫成對(duì)應(yīng)軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);

       。2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.

       。3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

        3、表(側(cè))面積與體積公式:

       。1)柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

       。2)錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

        (3)臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

       。4)球體:①表面積:S=;②體積:V=

        4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫

       。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

       。2)平面與平面平行:①線面平行面面平行。

       。3)垂直問(wèn)題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

        5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

       。1)異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

       。2)直線與平面所成的角:直線與射影所成的角

        四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問(wèn)題、曲線切線問(wèn)題)

        1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

        2、導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

       、賙=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

        3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;

       、;⑥;⑦;⑧。

        4.、導(dǎo)數(shù)的四則運(yùn)算法則:

        5、導(dǎo)數(shù)的應(yīng)用:

       。1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

        注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

        (2)求極值的步驟:

       、偾髮(dǎo)數(shù);

       、谇蠓匠痰母;

       、哿斜恚簷z驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

       。3)求可導(dǎo)函數(shù)值與最小值的步驟:

       、∏蟮母;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

        五、常用邏輯用語(yǔ):

        1、四種命題:

       、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

        注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。

        2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

        3、邏輯聯(lián)結(jié)詞:

       。1)且(and):命題形式pq;pqpqpqp

        (2)或(or):命題形式pq;真真真真假

        (3)非(not):命題形式p.真假假真假

        假真假真真

        假假假假真

        “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

        “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

        “非命題”的真假特點(diǎn)是“一真一假”

        4、充要條件

        由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

        5、全稱命題與特稱命題:

        短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱命題。

        短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào)表示,含有存在量詞的命題,叫做存在性命題。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

        考點(diǎn)一:向量的概念、向量的基本定理

        【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

        注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。

        考點(diǎn)二:向量的運(yùn)算

        【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

        【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的.定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。

        考點(diǎn)三:定比分點(diǎn)

        【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來(lái)幫助理解。

        【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

        考點(diǎn)四:向量與三角函數(shù)的綜合問(wèn)題

        【內(nèi)容解讀】向量與三角函數(shù)的綜合問(wèn)題是高考經(jīng)常出現(xiàn)的問(wèn)題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。

        【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問(wèn)題,屬中檔偏易題。

        考點(diǎn)五:平面向量與函數(shù)問(wèn)題的交匯

        【內(nèi)容解讀】平面向量與函數(shù)交匯的問(wèn)題,主要是向量與二次函數(shù)結(jié)合的問(wèn)題為主,要注意自變量的取值范圍。

        【命題規(guī)律】命題多以解答題為主,屬中檔題。

        考點(diǎn)六:平面向量在平面幾何中的應(yīng)用

        【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問(wèn)題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決.

        【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

        一、理解集合中的有關(guān)概念

        (1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。

        (2)集合與元素的關(guān)系用符號(hào)=表示。

        (3)常用數(shù)集的符號(hào)表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實(shí)數(shù)集 。

        (4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。

        (5)空集是指不含任何元素的集合。

        空集是任何集合的子集,是任何非空集合的真子集。

        二、函數(shù)

        一、映射與函數(shù):

        (1)映射的概念: (2)一一映射:(3)函數(shù)的概念:

        二、函數(shù)的三要素:

        相同函數(shù)的判斷方法:①對(duì)應(yīng)法則 ;②定義域 (兩點(diǎn)必須同時(shí)具備)

        (1)函數(shù)解析式的求法:

       、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

        (2)函數(shù)定義域的求法:

        ①含參問(wèn)題的定義域要分類討論;

       、趯(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。

        (3)函數(shù)值域的求法:

        ①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如: 的形式;

       、谀媲蠓(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;

       、軗Q元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

       、萑怯薪绶:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;

       、藁静坏仁椒:轉(zhuǎn)化成型如: ,利用平均值不等式公式來(lái)求值域;

       、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

       、鄶(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。

        三、函數(shù)的性質(zhì)

        函數(shù)的單調(diào)性、奇偶性、周期性

        單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。

        判定方法有:定義法(作差比較和作商比較)

        導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))

        復(fù)合函數(shù)法和圖像法。

        應(yīng)用:比較大小,證明不等式,解不等式。

        奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);

        f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。

        判別方法:定義法, 圖像法 ,復(fù)合函數(shù)法

        應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。

        周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

        其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

        應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。

        四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的.圖像,掌握函數(shù)圖像變換的一般規(guī)律。

        常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思考)

        平移變換 y=f(x)→y=f(x+a),y=f(x)+b

        注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò) 平移得到函數(shù)y=f(2x+4)的圖象。

        (ⅱ)會(huì)結(jié)合向量的平移,理解按照向量 (m,n)平移的意義。

        對(duì)稱變換 y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱

        y=f(x)→y=-f(x) ,關(guān)于x軸對(duì)稱

        y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱

        y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))

        伸縮變換:y=f(x)→y=f(ωx),

        y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。

        一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

        一、 導(dǎo)數(shù)的應(yīng)用

        1.用導(dǎo)數(shù)研究函數(shù)的最值

        確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。

        2.生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題

        1)費(fèi)用、成本最省問(wèn)題

        2)利潤(rùn)、收益最大問(wèn)題

        3)面積、體積最(大)問(wèn)題

        二、推理與證明

        1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的'關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。

        2.類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。

        三、不等式

        對(duì)于含有參數(shù)的一元二次不等式解的討論

        1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。

        2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

        一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))

        1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

        二、函數(shù)(30課時(shí),12個(gè))

        1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

        三、數(shù)列(12課時(shí),5個(gè))

        1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。

        四、三角函數(shù)(46課時(shí),17個(gè))

        1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

        五、平面向量(12課時(shí),8個(gè))

        1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。

        六、不等式(22課時(shí),5個(gè))

        1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式。

        七、直線和圓的方程(22課時(shí),12個(gè))

        1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。

        八、圓錐曲線(18課時(shí),7個(gè))

        1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì)。

        九、直線、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))

        1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的'位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

        十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))

        1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì)。

        十一、概率(12課時(shí),5個(gè))

        1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。

        選修Ⅱ(24個(gè))

        十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))

        1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。

        十三、極限(12課時(shí),6個(gè))

        1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。

        十四、導(dǎo)數(shù)(18課時(shí),8個(gè))

        1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。

        十五、復(fù)數(shù)(4課時(shí),4個(gè))

        1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

        圓柱、圓錐、圓臺(tái)和球的表面積

        (1)圓柱、圓錐、圓臺(tái)和多面體一樣都是可以平面展開(kāi)的。

       、賵A柱、圓錐、圓臺(tái)的側(cè)面展開(kāi)圖,是求其側(cè)面積的基本依據(jù)。

        圓柱的側(cè)面展開(kāi)圖,是由底面圖的周長(zhǎng)和母線長(zhǎng)組成的一個(gè)矩形。

       、趫A錐和側(cè)面展開(kāi)圖是一個(gè)由兩條母線長(zhǎng)和底面圓的周長(zhǎng)組成的扇形,其扇形的圓心角為

       、蹐A臺(tái)的側(cè)面展開(kāi)圖是一個(gè)由兩條母線長(zhǎng)和上、下底面周長(zhǎng)組成的扇環(huán),其扇環(huán)的圓心角為

        這個(gè)公式有利于空間幾何體和其側(cè)面展開(kāi)圖的互化

        顯然,當(dāng)r=0時(shí),這個(gè)公式就是圓錐側(cè)面展開(kāi)圖扇形的圓心角公式,所以,圓錐側(cè)面展開(kāi)圖扇形的圓心角公式是圓臺(tái)相關(guān)角的特例。

        (2)圓柱、圓錐和圓臺(tái)的側(cè)面公式為

        S側(cè)=π(r+R)l

        當(dāng)r=R時(shí),S側(cè)=2πRl,即圓柱的側(cè)面積公式。

        當(dāng)r=0時(shí),S側(cè)=rRl,即圓錐的面積公式。

        要重視,側(cè)面積間的這種關(guān)系。

        (3)球面是不能平面展開(kāi)的圖形,所以,求它的面積的方法與柱、錐、臺(tái)的方法完全不同。

        推導(dǎo)出來(lái),要用“微積分”等高等數(shù)學(xué)的知識(shí),課本上不能算是一種證明。

        求不規(guī)則圓形的度量屬性的常用方法是“細(xì)分——求和——取極限”,這種方法,在學(xué)完“微積分”的相關(guān)內(nèi)容后,不證自明,這里從略。

        畫圓柱、圓錐、圓臺(tái)和球的直觀圖的方法——正等測(cè)

        (1)正等測(cè)畫直觀圖的.要求:

        ①畫正等測(cè)的X、Y、Z三個(gè)軸時(shí),z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。

       、谠谕队皥D上取線段長(zhǎng)度的方法是:在三軸上或平行于三軸的線段都取實(shí)長(zhǎng)。

        這里與斜二測(cè)畫直觀圖的方法不同,要注意它們的區(qū)別。

        (2)正等測(cè)圓柱、圓錐、圓臺(tái)的直觀圖的區(qū)別主要是水平放置的平面圖形。

        用正等測(cè)畫水平放置的平面圓形時(shí),將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實(shí)長(zhǎng),在Z軸上或與Z軸平行的線段的畫法與斜二測(cè)相同,也都取實(shí)長(zhǎng)。

        關(guān)于幾何體表面內(nèi)兩點(diǎn)間的最短距離問(wèn)題

        柱、錐、臺(tái)的表面都可以平面展開(kāi),這些幾何體表面內(nèi)兩點(diǎn)間最短距離,就是其平面內(nèi)展開(kāi)圖內(nèi)兩點(diǎn)間的線段長(zhǎng)。

        由于球面不能平面展開(kāi),所以求球面內(nèi)兩點(diǎn)間的球面距離是一個(gè)全新的方法,這個(gè)最短距離是過(guò)這兩點(diǎn)大圓的劣弧長(zhǎng)。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

        導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。

        導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的`位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。

        不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。

        對(duì)于可導(dǎo)的函數(shù)f(x),x?f'(x)也是一個(gè)函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也來(lái)源于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分基本定理說(shuō)明了求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

        一、直線與方程

        (1)直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

       。2)直線的斜率

       、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。

        當(dāng) 時(shí), ; 當(dāng) 時(shí), ; 當(dāng) 時(shí), 不存在。

        ②過(guò)兩點(diǎn)的直線的斜率公式:

        注意下面四點(diǎn):(1)當(dāng) 時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

        (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

       。3)直線方程

       、冱c(diǎn)斜式: 直線斜率k,且過(guò)點(diǎn)

        注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。

        當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

       、谛苯厥剑 ,直線斜率為k,直線在y軸上的截距為b

        ③兩點(diǎn)式: ( )直線兩點(diǎn) ,

       、芙鼐厥剑

        其中直線 與 軸交于點(diǎn) ,與 軸交于點(diǎn) ,即 與 軸、 軸的截距分別為 。

        ⑤一般式: (A,B不全為0)

        注意:各式的適用范圍 特殊的方程如:

        平行于x軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));

        (5)直線系方程:即具有某一共同性質(zhì)的直線

       。ㄒ唬┢叫兄本系

        平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

       。ǘ┐怪敝本系

        垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

       。ㄈ┻^(guò)定點(diǎn)的直線系

       。á。┬甭蕿閗的直線系: ,直線過(guò)定點(diǎn) ;

        (ⅱ)過(guò)兩條直線 , 的交點(diǎn)的直線系方程為

       。 為參數(shù)),其中直線 不在直線系中。

       。6)兩直線平行與垂直

        當(dāng) , 時(shí),;

        注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

       。7)兩條直線的交點(diǎn)

        相交

        交點(diǎn)坐標(biāo)即方程組 的一組解。

        方程組無(wú)解 ; 方程組有無(wú)數(shù)解 與 重合

       。8)兩點(diǎn)間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),

        則

        (9)點(diǎn)到直線距離公式:一點(diǎn) 到直線 的距離

       。10)兩平行直線距離公式

        在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

        二、圓的方程

        1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

        2、圓的方程

       。1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;

       。2)一般方程

        當(dāng) 時(shí),方程表示圓,此時(shí)圓心為 ,半徑為

        當(dāng) 時(shí),表示一個(gè)點(diǎn); 當(dāng) 時(shí),方程不表示任何圖形。

       。3)求圓方程的方法:

        一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

        需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

        另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

        3、直線與圓的位置關(guān)系:

        直線與圓的位置關(guān)系有相離,相切,相交三種情況:

        (1)設(shè)直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;

       。2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

        (3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2

        4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

        設(shè)圓 ,

        兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

        當(dāng) 時(shí)兩圓外離,此時(shí)有公切線四條;

        當(dāng) 時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

        當(dāng) 時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

        當(dāng) 時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

        當(dāng) 時(shí),兩圓內(nèi)含; 當(dāng) 時(shí),為同心圓。

        注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

        圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

        三、立體幾何初步

        1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

       。1)棱柱:

        幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

       。2)棱錐

        幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

       。3)棱臺(tái):

        幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)

       。4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

        (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

        幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

       。6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

        幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

       。7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

        2、空間幾何體的三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

        俯視圖(從上向下)

        注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

        3、空間幾何體的直觀圖——斜二測(cè)畫法

        斜二測(cè)畫法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

       、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

        4、柱體、錐體、臺(tái)體的表面積與體積

       。1)幾何體的表面積為幾何體各個(gè)面的面積的和。

       。2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高, 為斜高,l為母線)

       。3)柱體、錐體、臺(tái)體的體積公式

       。4)球體的表面積和體積公式:V = ; S =

        4、空間點(diǎn)、直線、平面的位置關(guān)系

        公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。

        應(yīng)用: 判斷直線是否在平面內(nèi)

        用符號(hào)語(yǔ)言表示公理1:

        公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

        符號(hào):平面α和β相交,交線是a,記作α∩β=a。

        符號(hào)語(yǔ)言:

        公理2的作用:

       、偎桥卸▋蓚(gè)平面相交的方法。

       、谒f(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。

       、鬯梢耘袛帱c(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

        公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

        推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

        公理3及其推論作用:

       、偎强臻g內(nèi)確定平面的依據(jù)

       、谒亲C明平面重合的依據(jù)

        公理4:平行于同一條直線的兩條直線互相平行

        空間直線與直線之間的位置關(guān)系

       、 異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

        ② 異面直線性質(zhì):既不平行,又不相交。

       、 異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線

        ④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。

        求異面直線所成角步驟:

        A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。

        B、證明作出的角即為所求角

        C、利用三角形來(lái)求角

        (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

       。8)空間直線與平面之間的位置關(guān)系

        直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

        三種位置關(guān)系的符號(hào)表示:a α a∩α=A a‖α

        (9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β

        相交——有一條公共直線。α∩β=b

        5、空間中的平行問(wèn)題

       。1)直線與平面平行的判定及其性質(zhì)

        線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

        線線平行 線面平行

        線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行 線線平行

       。2)平面與平面平行的判定及其性質(zhì)

        兩個(gè)平面平行的判定定理

       。1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

       。ň面平行→面面平行),

       。2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。

       。ň線平行→面面平行),

        (3)垂直于同一條直線的兩個(gè)平面平行,

        兩個(gè)平面平行的性質(zhì)定理

        (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)

       。2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的`交線平行。(面面平行→線線平行)

        7、空間中的垂直問(wèn)題

       。1)線線、面面、線面垂直的定義

       、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。

        ②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。

       、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

       。2)垂直關(guān)系的判定和性質(zhì)定理

       、倬面垂直判定定理和性質(zhì)定理

        判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。

        性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

        ②面面垂直的判定定理和性質(zhì)定理

        判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

        性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

        9、空間角問(wèn)題

       。1)直線與直線所成的角

       、賰善叫兄本所成的角:規(guī)定為 。

       、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

        ③兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

        (2)直線和平面所成的角

       、倨矫娴钠叫芯與平面所成的角:規(guī)定為 。

        ②平面的垂線與平面所成的角:規(guī)定為 。

       、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。

        求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。

        在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

        在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:

       。1)斜線上一點(diǎn)到面的垂線;

       。2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

       。3)二面角和二面角的平面角

        ①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

       、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

       、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。

        兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

       、芮蠖娼堑姆椒

        定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

        垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

        1.不等式證明的依據(jù)

        (2)不等式的性質(zhì)(略)

        (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

       、赼2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))

        2.不等式的.證明方法

        (1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

        用比較法證明不等式的步驟是:作差——變形——判斷符號(hào).

        (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過(guò)的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

        (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

        證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

        平面向量

        戴氏航天學(xué)校老師總結(jié)加法與減法的代數(shù)運(yùn)算:

        (1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

        向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

        戴氏航天學(xué)校老師總結(jié)向量加法有如下規(guī)律:+= +(交換律); +( +c)=( + )+c (結(jié)合律);

        兩個(gè)向量共線的充要條件:

        (1) 向量b與非零向量共線的充要條件是有且僅有一個(gè)實(shí)數(shù),使得b= .

        (2) 若=(),b=()則‖b .

        平面向量基本定理:

        若e1、e2是同一平面內(nèi)的.兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,戴氏航天學(xué)校老師提醒有且只 有一對(duì)實(shí)數(shù),,使得= e1+ e2

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

        導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問(wèn)題、曲線切線問(wèn)題)

        1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

        2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

       、賙=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

        3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;

       、;⑥;⑦;⑧。

        4.導(dǎo)數(shù)的四則運(yùn)算法則:

        5.導(dǎo)數(shù)的應(yīng)用:

        (1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

        注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

        (2)求極值的步驟:

        ①求導(dǎo)數(shù);

       、谇蠓匠痰母;

       、哿斜:檢驗(yàn)在方程根的左右的.符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

        (3)求可導(dǎo)函數(shù)值與最小值的步驟:

        ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

        一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。

        簡(jiǎn)單隨機(jī)抽樣的特點(diǎn):

        (1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為

        (2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

        (3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).

        (4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣

        簡(jiǎn)單抽樣常用方法:

        (1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的'樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法.(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開(kāi)始的數(shù)字;第三步,獲取樣本號(hào)碼概率:

        相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):系統(tǒng)抽樣

        系統(tǒng)抽樣的概念:

        當(dāng)整體中個(gè)體數(shù)較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規(guī)則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統(tǒng)抽樣。

        系統(tǒng)抽樣的步驟:

        (1)采用隨機(jī)方式將總體中的個(gè)體編號(hào);

        (2)將整個(gè)編號(hào)進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即

        =k不是整數(shù)時(shí),可采用隨機(jī)方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數(shù)N′滿足是整數(shù);

        (3)在第一段中采用簡(jiǎn)單隨機(jī)抽樣方法確定第一個(gè)被抽得的個(gè)體編號(hào)l;

        (4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個(gè)體的編號(hào),從而得到整個(gè)樣本。

        相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):分層抽樣

        分層抽樣:

        當(dāng)已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。

        利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。

        不放回抽樣和放回抽樣:

        在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱這樣的抽樣為放回抽樣.

        隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣

        分層抽樣的特點(diǎn):

        (1)分層抽樣適用于差異明顯的幾部分組成的情況;

        (2)在每一層進(jìn)行抽樣時(shí),在采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣;

        (3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;

        (4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。

      【高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      高二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)07-13

      高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)05-16

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-06

      高二知識(shí)點(diǎn)數(shù)學(xué)總結(jié)歸納06-15

      高二知識(shí)點(diǎn)數(shù)學(xué)總結(jié)歸納02-02

      數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)歸納07-25

      高二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)07-12

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納05-26

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【熱】05-26

      【推薦】高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-26