高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【熱】
總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而肯定成績(jī),得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書(shū)面材料,它可以使我們更有效率,不妨讓我們認(rèn)真地完成總結(jié)吧。你想知道總結(jié)怎么寫(xiě)嗎?以下是小編精心整理的高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。
簡(jiǎn)單隨機(jī)抽樣的特點(diǎn):
(1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為
(2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;
(3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).
(4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣
簡(jiǎn)單抽樣常用方法:
(1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫(xiě)在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法.(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開(kāi)始的數(shù)字;第三步,獲取樣本號(hào)碼概率:
相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):系統(tǒng)抽樣
系統(tǒng)抽樣的概念:
當(dāng)整體中個(gè)體數(shù)較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規(guī)則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統(tǒng)抽樣。
系統(tǒng)抽樣的步驟:
(1)采用隨機(jī)方式將總體中的個(gè)體編號(hào);
(2)將整個(gè)編號(hào)進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即
=k不是整數(shù)時(shí),可采用隨機(jī)方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數(shù)N′滿足是整數(shù);
(3)在第一段中采用簡(jiǎn)單隨機(jī)抽樣方法確定第一個(gè)被抽得的'個(gè)體編號(hào)l;
(4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個(gè)體的編號(hào),從而得到整個(gè)樣本。
相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):分層抽樣
分層抽樣:
當(dāng)已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。
利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。
不放回抽樣和放回抽樣:
在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱這樣的抽樣為放回抽樣.
隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣
分層抽樣的特點(diǎn):
(1)分層抽樣適用于差異明顯的幾部分組成的情況;
(2)在每一層進(jìn)行抽樣時(shí),在采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣;
(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
(4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。
新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過(guò)程,應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問(wèn)的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的'解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
調(diào)整心態(tài),正確對(duì)待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一、直線與方程
。1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
。2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。
當(dāng) 時(shí), ; 當(dāng) 時(shí), ; 當(dāng) 時(shí), 不存在。
②過(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng) 時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
。3)直線方程
、冱c(diǎn)斜式: 直線斜率k,且過(guò)點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
②斜截式: ,直線斜率為k,直線在y軸上的截距為b
、蹆牲c(diǎn)式: ( )直線兩點(diǎn) ,
④截矩式:
其中直線 與 軸交于點(diǎn) ,與 軸交于點(diǎn) ,即 與 軸、 軸的截距分別為 。
、菀话闶剑 (A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行于x軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));
。5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))
。ǘ┐怪敝本系
垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))
。ㄈ┻^(guò)定點(diǎn)的直線系
。á。┬甭蕿閗的直線系: ,直線過(guò)定點(diǎn) ;
。áⅲ┻^(guò)兩條直線 , 的交點(diǎn)的直線系方程為
( 為參數(shù)),其中直線 不在直線系中。
。6)兩直線平行與垂直
當(dāng) , 時(shí),;
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。
(7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組 的一組解。
方程組無(wú)解 ; 方程組有無(wú)數(shù)解 與 重合
。8)兩點(diǎn)間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),
則
。9)點(diǎn)到直線距離公式:一點(diǎn) 到直線 的距離
(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。
二、圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
2、圓的方程
。1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;
。2)一般方程
當(dāng) 時(shí),方程表示圓,此時(shí)圓心為 ,半徑為
當(dāng) 時(shí),表示一個(gè)點(diǎn); 當(dāng) 時(shí),方程不表示任何圖形。
。3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;
。2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
設(shè)圓 ,
兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
當(dāng) 時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng) 時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng) 時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng) 時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;
當(dāng) 時(shí),兩圓內(nèi)含; 當(dāng) 時(shí),為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
三、立體幾何初步
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
。2)棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
。3)棱臺(tái):
幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。
。5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。
。6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。
。7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法
斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
4、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
。2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高, 為斜高,l為母線)
。3)柱體、錐體、臺(tái)體的體積公式
。4)球體的表面積和體積公式:V = ; S =
4、空間點(diǎn)、直線、平面的位置關(guān)系
公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。
應(yīng)用: 判斷直線是否在平面內(nèi)
用符號(hào)語(yǔ)言表示公理1:
公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a。
符號(hào)語(yǔ)言:
公理2的作用:
、偎桥卸▋蓚(gè)平面相交的方法。
、谒f(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。
、鬯梢耘袛帱c(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。
公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:
①它是空間內(nèi)確定平面的依據(jù)
、谒亲C明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
空間直線與直線之間的位置關(guān)系
① 異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
、 異面直線性質(zhì):既不平行,又不相交。
、 異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線
、 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。
B、證明作出的角即為所求角
C、利用三角形來(lái)求角
。7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。
。8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:a α a∩α=A a‖α
(9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問(wèn)題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。
線線平行 線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行 線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
。1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
。ň面平行→面面平行),
。2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。
。ň線平行→面面平行),
。3)垂直于同一條直線的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
。1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問(wèn)題
。1)線線、面面、線面垂直的定義
、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。
、诰面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。
、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。
。2)垂直關(guān)系的判定和性質(zhì)定理
、倬面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個(gè)平面內(nèi)的.兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。
性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
9、空間角問(wèn)題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為 。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
、蹆蓷l異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
、倨矫娴钠叫芯與平面所成的角:規(guī)定為 。
、谄矫娴拇咕與平面所成的角:規(guī)定為 。
、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:
(1)斜線上一點(diǎn)到面的垂線;
。2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
(3)二面角和二面角的平面角
、俣娼堑亩x:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼恰
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
、芮蠖娼堑姆椒
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
一、理解集合中的有關(guān)概念
(1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。
(2)集合與元素的關(guān)系用符號(hào)=表示。
(3)常用數(shù)集的符號(hào)表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實(shí)數(shù)集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函數(shù)
一、映射與函數(shù):
(1)映射的概念: (2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
相同函數(shù)的判斷方法:①對(duì)應(yīng)法則 ;②定義域 (兩點(diǎn)必須同時(shí)具備)
(1)函數(shù)解析式的求法:
、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
、俸瑓(wèn)題的定義域要分類討論;
②對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。
(3)函數(shù)值域的求法:
、倥浞椒:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如: 的形式;
、谀媲蠓(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;
④換元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
、萑怯薪绶:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;
、藁静坏仁椒:轉(zhuǎn)化成型如: ,利用平均值不等式公式來(lái)求值域;
、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的`單調(diào)性求值域。
⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。
三、函數(shù)的性質(zhì)
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。
判別方法:定義法, 圖像法 ,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò) 平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會(huì)結(jié)合向量的平移,理解按照向量 (m,n)平移的意義。
對(duì)稱變換 y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱
y=f(x)→y=-f(x) ,關(guān)于x軸對(duì)稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
1、學(xué)會(huì)三視圖的分析:
2、斜二測(cè)畫(huà)法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);
(2)平行于x軸的'線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半、
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度、
3、表(側(cè))面積與體積公式:
⑴柱體:
、俦砻娣e:S=S側(cè)+2S底;
、趥(cè)面積:S側(cè)=;
③體積:V=S底h
⑵錐體:
、俦砻娣e:S=S側(cè)+S底;
②側(cè)面積:S側(cè)=;
、垠w積:V=S底h:
⑶臺(tái)體:
、俦砻娣e:S=S側(cè)+S上底S下底
、趥(cè)面積:S側(cè)=
⑷球體:
、俦砻娣e:S=;
、隗w積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
(1)直線與平面平行:
、倬線平行線面平行;
②面面平行線面平行。
(2)平面與平面平行:
、倬面平行面面平行。
(3)垂直問(wèn)題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟Ⅰ、找或作角;Ⅱ、求角)
、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;
、浦本與平面所成的角:直線與射影所成的角
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.
二、函數(shù)(30課時(shí),12個(gè))1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.
三、數(shù)列(12課時(shí),5個(gè))1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.
四、三角函數(shù)(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.
六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式.
七、直線和圓的方程(22課時(shí),12個(gè))1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.
八、圓錐曲線(18課時(shí),7個(gè))1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì).九、(B)直線、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的.判與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì).
十一、概率(12課時(shí),5個(gè))1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸.
十三、極限(12課時(shí),6個(gè))1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的最大值和最小值.
十五、復(fù)數(shù)(4課時(shí),4個(gè))1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個(gè)知識(shí)點(diǎn),從前一份試卷要考查90個(gè)知識(shí)點(diǎn),覆蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!相信對(duì)你的學(xué)習(xí)會(huì)有幫助的,祝你成功!答案補(bǔ)充一試全國(guó)高中數(shù)學(xué)聯(lián)賽的一試競(jìng)賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識(shí)范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競(jìng)賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積最大的點(diǎn),重心。幾何不等式。簡(jiǎn)單的等周問(wèn)題。了解下述定理:在周長(zhǎng)一定的n邊形的集合中,正n邊形的面積最大。在周長(zhǎng)一定的簡(jiǎn)單閉曲線的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長(zhǎng)最小。在面積一定的簡(jiǎn)單閉曲線的集合中,圓的周長(zhǎng)最小。幾何中的運(yùn)動(dòng):反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡(jiǎn)單的函數(shù)方程。n個(gè)變?cè)钠骄坏仁,柯西不等式,排序不等式及?yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡(jiǎn)單的組合恒等式。一元n次方程(多項(xiàng)式)根的個(gè)數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對(duì)定理。簡(jiǎn)單的初等數(shù)論問(wèn)題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無(wú)窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì)作截面、表面展開(kāi)圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的'條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。
然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
一、導(dǎo)數(shù)的應(yīng)用
1.用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2.生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
1)費(fèi)用、成本最省問(wèn)題
2)利潤(rùn)、收益最大問(wèn)題
3)面積、體積最(大)問(wèn)題
二、推理與證明
1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。
2.類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
三、不等式
對(duì)于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
拓展閱讀
說(shuō)明:以下內(nèi)容為本文主關(guān)鍵詞的百科內(nèi)容,一詞可能多意,僅作為參考閱讀內(nèi)容,下載的文檔不包含此內(nèi)容。每個(gè)關(guān)鍵詞后面會(huì)隨機(jī)推薦一個(gè)搜索引擎工具,方便用戶從多個(gè)垂直領(lǐng)域了解更多與本文相似的內(nèi)容。
1、數(shù)學(xué):數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門(mén)學(xué)科。數(shù)學(xué)是人類對(duì)事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實(shí)世界的任何問(wèn)題,所有的數(shù)學(xué)對(duì)象本質(zhì)上都是人為定義的。從這個(gè)意義上,數(shù)學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數(shù)學(xué)家和哲學(xué)家對(duì)數(shù)學(xué)的確切范圍和定義有一系列的看法。在人類歷史發(fā)展和社會(huì)生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時(shí)也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。數(shù)學(xué)史數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)a:演繹邏輯學(xué)(也稱符號(hào)邏輯學(xué)),b:證明論(也稱元數(shù)學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數(shù)學(xué)基礎(chǔ),g:數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)其他學(xué)科。數(shù)論a:初等數(shù)論,b:解析數(shù)論,c:代數(shù)數(shù)論,d:超越數(shù)論,e:丟番圖逼近,f:數(shù)的幾何,g:概率數(shù)論,h:計(jì)算數(shù)論,i:數(shù)論其他學(xué)科。代數(shù)學(xué)a:線性代數(shù),b:群論,c:域論,d:李群,e:李代數(shù),f:Kac-Moody代數(shù),g:環(huán)論(包括交換環(huán)與交換代數(shù),...頭條搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
2、類比推理:類比推理亦稱“類推”。推理的一種形式。根據(jù)兩個(gè)對(duì)象在某些屬性上相同或相似,通過(guò)比較而推斷出它們?cè)谄渌麑傩陨弦蚕嗤耐评磉^(guò)程。它是從觀察個(gè)別現(xiàn)象開(kāi)始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類推和不完全類推兩種形式。完全類推是兩個(gè)或兩類事物在進(jìn)行比較的方面完全相同時(shí)的類推;不完全類推是兩個(gè)或兩類事物在進(jìn)行比較的方面不完全相同時(shí)的類推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類比推理是根據(jù)兩個(gè)或兩類對(duì)象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡(jiǎn)稱類推、類比。以關(guān)于兩個(gè)事物某些屬性相同的判斷為前提,推出兩個(gè)事物的其他屬性相同的結(jié)論的推理。如聲和光有不少屬性相同--直線傳播,有反射、折射和干擾等現(xiàn)象;由此推出:既然聲有波動(dòng)性質(zhì),光也有波動(dòng)性質(zhì)。這就是類比推理。類比推理具有或然性。如果前提中確認(rèn)的共同屬性很少,而且共同屬性和推出來(lái)的`屬性沒(méi)有什么關(guān)系,這樣的類比推...谷歌搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
3、總結(jié):總結(jié)是事后對(duì)某一階段的工作或某項(xiàng)工作的完成情況,包括取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析,為今后的工作提供幫助和借鑒的一種書(shū)面材料。(1)自身性?偨Y(jié)都是以第一人稱,從自身出發(fā)。它是單位或個(gè)人自身實(shí)踐活動(dòng)的反映,其內(nèi)容行文來(lái)自自身實(shí)踐,其結(jié)論也為指導(dǎo)今后自身實(shí)踐。(2)指導(dǎo)性?偨Y(jié)以回顧思考的方式對(duì)自身以往實(shí)踐做理性認(rèn)識(shí),找出事物本質(zhì)和發(fā)展規(guī)律,取得經(jīng)驗(yàn),避免失誤,以指導(dǎo)未來(lái)工作。(3)理論性?偨Y(jié)是理論的升華,是對(duì)前一階段工作的經(jīng)驗(yàn)、教訓(xùn)的分析研究,借此上升到理論的高度,并從中提煉出有規(guī)律性的東西,從而提高認(rèn)識(shí),以正確的認(rèn)識(shí)來(lái)把握客觀事物,更好地指導(dǎo)今后的實(shí)際工作。(4)客觀性?偨Y(jié)是對(duì)實(shí)際工作再認(rèn)識(shí)的過(guò)程,是對(duì)前一階段工作的回顧?偨Y(jié)的內(nèi)容必須要完全忠于自身的客觀實(shí)踐,其材料必須以客觀事實(shí)為依據(jù),不允許東拼西湊,要真實(shí)、客觀地分析情況、總結(jié)經(jīng)驗(yàn)。(1)綜合性總結(jié)。對(duì)某一單位、某一部門(mén)工作進(jìn)行全面性總結(jié),既反...頭條搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
4、因式分解:把一個(gè)多項(xiàng)式在一個(gè)范圍(如實(shí)數(shù)范圍內(nèi)分解,即所有項(xiàng)均為實(shí)數(shù))化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。把一個(gè)多項(xiàng)式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。因式分解是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,在數(shù)學(xué)求根作圖、解一元二次方程方面也有很廣泛的應(yīng)用,是解決許多數(shù)學(xué)問(wèn)題的有力工具。因式分解方法靈活,技巧性強(qiáng)。學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所需的,而且對(duì)于培養(yǎng)解題技能、發(fā)展思維能力都有著十分獨(dú)特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運(yùn)算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運(yùn)算能力,又可以提高綜合分析和解決問(wèn)題的能力;窘Y(jié)論:分解因式為整式乘法的逆過(guò)程。高級(jí)結(jié)論:在高等代數(shù)上,因式分解有一些重要結(jié)論,在初等代數(shù)層面上證明很困難,但是理解很容易。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運(yùn)算律:
交換律:a+b=b+a;
結(jié)合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點(diǎn),指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
3、數(shù)乘向量
實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當(dāng)λ>0時(shí),λa與a同方向;
當(dāng)λ<0時(shí),λa與a反方向;
當(dāng)λ=0時(shí),λa=0,方向任意。
當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。
當(dāng)∣λ∣>1時(shí),表示向量a的.有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;
當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。
數(shù)與向量的乘法滿足下面的運(yùn)算律
結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。
向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的數(shù)量積
定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。
向量的數(shù)量積的運(yùn)算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數(shù)量積的性質(zhì)
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
1.有向線段的定義
線段的端點(diǎn)A為始點(diǎn),端點(diǎn)B為終點(diǎn),這時(shí)線段AB具有射線AB的方向.像這樣,具有方向的線段叫做有向線段.記作:.
2.有向線段的三要素:有向線段包含三個(gè)要素:始點(diǎn)、方向和長(zhǎng)度.
3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個(gè)要素:大小和方向.
(2)向量的表示方法:①用兩個(gè)大寫(xiě)的英文字母及前頭表示,有向線段來(lái)表示向量時(shí),也稱其為向量.書(shū)寫(xiě)時(shí),則用帶箭頭的小寫(xiě)字母,,,來(lái)表示.
4.向量的長(zhǎng)度(模):如果向量=,那么有向線段的長(zhǎng)度表示向量的大小,叫做向量的長(zhǎng)度(或模),記作||.
5.相等向量:如果兩個(gè)向量和的方向相同且長(zhǎng)度相等,則稱和相等,記作:=.
6.相反向量:與向量等長(zhǎng)且方向相反的向量叫做的相反向量,記作:-.
7.向量平行(共線):如果兩個(gè)向量方向相同或相反,則稱這兩個(gè)向量平行,向量平行也稱向量共線.向量平行于向量,記作//.規(guī)定: //.
8.零向量:長(zhǎng)度等于零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由于零向量方向的特殊性,解答問(wèn)題時(shí),一定要看清題目中是零向量還是非零向量.
9.單位向量:長(zhǎng)度等于1的向量叫做單位向量.
10.向量的.加法運(yùn)算:
(1)向量加法的三角形法則
11.向量的減法運(yùn)算
12、兩向量的和差的模與兩向量模的和差之間的關(guān)系
對(duì)于任意兩個(gè)向量,,都有|||-|||||+||.
13.?dāng)?shù)乘向量的定義:
實(shí)數(shù)和向量的乘積是一個(gè)向量,這種運(yùn)算叫做數(shù)乘向量,記作.
向量的長(zhǎng)度與方向規(guī)定為:(1)||=|
(2)當(dāng)0時(shí),與方向相同;當(dāng)0時(shí),與方向相反.
(3)當(dāng)=0時(shí),當(dāng)=時(shí),=.
14.?dāng)?shù)乘向量的運(yùn)算律:(1))= (結(jié)合律)
(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)
15.平行向量基本定理
如果向量,則//的充分必要條件是,存在唯一的實(shí)數(shù),使得=.
如果與不共線,若m=n,則m=n=0.
16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.
=||,即==(,)
17.線段中點(diǎn)的向量表達(dá)式
點(diǎn)M是線段AB的中點(diǎn),O是平面內(nèi)任意一點(diǎn),則=(+).
18.平面向量的直角坐標(biāo)運(yùn)算:如果=(a1,a2),=(b1,b2),則
+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).
19.利用兩點(diǎn)表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).
20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則
=a1=b1且a2=b2.
//a1b2-a2b1=0.特別地,如果b10,b20,則// =.
21.向量的長(zhǎng)度公式:若=(a1,a2),則||=.
22.平面上兩點(diǎn)間的距離公式:若A(x1,y1),B(x2,y2),則||=.
23.中點(diǎn)公式
若點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),點(diǎn)M(x,y)是線段AB的中點(diǎn),則x=,y= .
24.重心公式
在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則
x=,y=
25.(1)兩個(gè)向量夾角的取值范圍是[0,p],即0,p.
當(dāng)=0時(shí),與同向;當(dāng)=p時(shí),與反向
當(dāng)= 時(shí),與垂直,記作.
(3)向量的內(nèi)積定義:=||||cos.
其中,||cos叫做向量在向量方向上的正射影的數(shù)量.規(guī)定=0.
(4)內(nèi)積的幾何意義
與的內(nèi)積的幾何意義是的模與在方向上的正射影的數(shù)量,或的模與在 方向上的正射影數(shù)量的乘積
當(dāng)0,90時(shí),0;=90時(shí),
90時(shí),0.
26.向量?jī)?nèi)積的運(yùn)算律:
(1)交換率
(2)數(shù)乘結(jié)合律
(3)分配律
(4)不滿足組合律
27.向量?jī)?nèi)積滿足乘法公式
29.向量?jī)?nèi)積的應(yīng)用:
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
一、導(dǎo)數(shù)的應(yīng)用
1、用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2、生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
1)費(fèi)用、成本最省問(wèn)題
2)利潤(rùn)、收益最大問(wèn)題
3)面積、體積最(大)問(wèn)題
二、推理與證明
1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的'方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。
2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
三、不等式
對(duì)于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。
通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
四、坐標(biāo)平面上的直線
1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。
2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。
3、重難點(diǎn):初步建立代數(shù)方法解決幾何問(wèn)題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。
五、圓錐曲線
1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。
2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線
上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問(wèn)題。
3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過(guò)代數(shù)方法解決幾何問(wèn)題。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))
1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
二、函數(shù)(30課時(shí),12個(gè))
1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時(shí),5個(gè))
1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)(46課時(shí),17個(gè))
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量(12課時(shí),8個(gè))
1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。
六、不等式(22課時(shí),5個(gè))
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式。
七、直線和圓的方程(22課時(shí),12個(gè))
1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。
八、圓錐曲線(18課時(shí),7個(gè))
1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì)。
九、直線、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))
1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的`判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì)。
十一、概率(12課時(shí),5個(gè))
1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。
選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))
1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。
十三、極限(12課時(shí),6個(gè))
1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))
1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。
十五、復(fù)數(shù)(4課時(shí),4個(gè))
1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
1、在中學(xué)我們只研直圓柱、直圓錐和直圓臺(tái)。所以對(duì)圓柱、圓錐、圓臺(tái)的旋轉(zhuǎn)定義、實(shí)際上是直圓柱、直圓錐、直圓臺(tái)的定義。
這樣定義直觀形象,便于理解,而且對(duì)它們的性質(zhì)也易推導(dǎo)。
對(duì)于球的定義中,要注意區(qū)分球和球面的概念,球是實(shí)心的。
等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來(lái)定義的,在實(shí)踐中運(yùn)用較廣,要注意與一般圓柱、圓錐的區(qū)分。
2、圓柱、圓錐、圓和球的性質(zhì)
(1)圓柱的性質(zhì),要強(qiáng)調(diào)兩點(diǎn):一是連心線垂直圓柱的底面;二是三個(gè)截面的性質(zhì)——平行于底面的截面是與底面全等的圓;軸截面是一個(gè)以上、下底面圓的直徑和母線所組成的矩形;平行于軸線的截面是一個(gè)以上、下底的圓的弦和母線組成的矩形。
(2)圓錐的性質(zhì),要強(qiáng)調(diào)三點(diǎn)
①平行于底面的截面圓的性質(zhì):
截面圓面積和底面圓面積的比等于從頂點(diǎn)到截面和從頂點(diǎn)到底面距離的平方比。
、谶^(guò)圓錐的頂點(diǎn),且與其底面相交的截面是一個(gè)由兩條母線和底面圓的弦組成的等腰三角形,其面積為:
易知,截面三角形的頂角不大于軸截面的頂角(如圖10-20),事實(shí)上,由BC≥AB,VC=VB=VA可得∠B≤BVC、
由于截面三角形的頂角不大于軸截面的頂角。
所以,當(dāng)軸截面的頂角θ≤90°,有0°<α≤θ≤90°,即有
當(dāng)軸截面的頂角θ>90°時(shí),軸截面的面積卻不是的,這是因?yàn)椋?0°≤α<θ<180°時(shí),1≥sinα>sinθ>0、
、蹐A錐的母線l,高h(yuǎn)和底面圓的半徑組成一個(gè)直徑三角形,圓錐的有關(guān)計(jì)算問(wèn)題,一般都要?dú)w結(jié)為解這個(gè)直角三角形,特別是關(guān)系式
l2=h2+R2
(3)圓臺(tái)的性質(zhì),都是從“圓臺(tái)為截頭圓錐”這個(gè)事實(shí)推得的.,高考,但仍要強(qiáng)調(diào)下面幾點(diǎn):
、賵A臺(tái)的母線共點(diǎn),所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。
②平行于底面的截面若將圓臺(tái)的高分成距上、下兩底為兩段的截面面積為S,則
其中S1和S2分別為上、下底面面積。
的截面性質(zhì)的推廣。
③圓臺(tái)的母線l,高h(yuǎn)和上、下兩底圓的半徑r、R,組成一個(gè)直角梯形,且有
l2=h2+(R-r)2
圓臺(tái)的有關(guān)計(jì)算問(wèn)題,常歸結(jié)為解這個(gè)直角梯形。
(4)球的性質(zhì),著重掌握其截面的性質(zhì)。
、儆萌我馄矫娼厍蛩玫慕孛媸且粋(gè)圓面,球心和截面圓圓心的連線與這個(gè)截面垂直。
、谌绻肦和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則
R2=r2+d2
即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個(gè)直角三角形,有關(guān)球的計(jì)算問(wèn)題,常歸結(jié)為解這個(gè)直角三角形。
3、圓柱、圓錐、圓臺(tái)和球的表面積
(1)圓柱、圓錐、圓臺(tái)和多面體一樣都是可以平面展開(kāi)的。
①圓柱、圓錐、圓臺(tái)的側(cè)面展開(kāi)圖,是求其側(cè)面積的基本依據(jù)。
圓柱的側(cè)面展開(kāi)圖,是由底面圖的周長(zhǎng)和母線長(zhǎng)組成的一個(gè)矩形。
、趫A錐和側(cè)面展開(kāi)圖是一個(gè)由兩條母線長(zhǎng)和底面圓的周長(zhǎng)組成的扇形,其扇形的圓心角為
、蹐A臺(tái)的側(cè)面展開(kāi)圖是一個(gè)由兩條母線長(zhǎng)和上、下底面周長(zhǎng)組成的扇環(huán),其扇環(huán)的圓心角為
這個(gè)公式有利于空間幾何體和其側(cè)面展開(kāi)圖的互化
顯然,當(dāng)r=0時(shí),這個(gè)公式就是圓錐側(cè)面展開(kāi)圖扇形的圓心角公式,所以,圓錐側(cè)面展開(kāi)圖扇形的圓心角公式是圓臺(tái)相關(guān)角的特例。
(2)圓柱、圓錐和圓臺(tái)的側(cè)面公式為
S側(cè)=π(r+R)l
當(dāng)r=R時(shí),S側(cè)=2πRl,即圓柱的側(cè)面積公式。
當(dāng)r=0時(shí),S側(cè)=rRl,即圓錐的面積公式。
要重視,側(cè)面積間的這種關(guān)系。
(3)球面是不能平面展開(kāi)的圖形,所以,求它的面積的方法與柱、錐、臺(tái)的方法完全不同。
推導(dǎo)出來(lái),要用“微積分”等高等數(shù)學(xué)的知識(shí),課本上不能算是一種證明。
求不規(guī)則圓形的度量屬性的常用方法是“細(xì)分——求和——取極限”,這種方法,在學(xué)完“微積分”的相關(guān)內(nèi)容后,不證自明,這里從略。
4、畫(huà)圓柱、圓錐、圓臺(tái)和球的直觀圖的方法——正等測(cè)
(1)正等測(cè)畫(huà)直觀圖的要求:
、佼(huà)正等測(cè)的X、Y、Z三個(gè)軸時(shí),z軸畫(huà)成鉛直方向,X軸和Y軸各與Z軸成120°。
、谠谕队皥D上取線段長(zhǎng)度的方法是:在三軸上或平行于三軸的線段都取實(shí)長(zhǎng)。
這里與斜二測(cè)畫(huà)直觀圖的方法不同,要注意它們的區(qū)別。
(2)正等測(cè)圓柱、圓錐、圓臺(tái)的直觀圖的區(qū)別主要是水平放置的平面圖形。
用正等測(cè)畫(huà)水平放置的平面圓形時(shí),將X軸畫(huà)成水平位置,Y軸畫(huà)成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實(shí)長(zhǎng),在Z軸上或與Z軸平行的線段的畫(huà)法與斜二測(cè)相同,也都取實(shí)長(zhǎng)。
5、關(guān)于幾何體表面內(nèi)兩點(diǎn)間的最短距離問(wèn)題
柱、錐、臺(tái)的表面都可以平面展開(kāi),這些幾何體表面內(nèi)兩點(diǎn)間最短距離,就是其平面內(nèi)展開(kāi)圖內(nèi)兩點(diǎn)間的線段長(zhǎng)。
由于球面不能平面展開(kāi),所以求球面內(nèi)兩點(diǎn)間的球面距離是一個(gè)全新的方法,這個(gè)最短距離是過(guò)這兩點(diǎn)大圓的劣弧長(zhǎng)。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
一、直線與圓:
1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。
3、直線方程:
。1)點(diǎn)斜式:直線過(guò)點(diǎn)斜率為,則直線方程為
(2)斜截式:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關(guān)系:
。1)平行A1/A2=B1/B2注意檢驗(yàn)
。2)垂直A1A2+B1B2=0
5、點(diǎn)到直線的距離公式;
兩條平行線與的距離是
6、圓的標(biāo)準(zhǔn)方程:圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.①相離②相切③相交
9、解決直線與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長(zhǎng)
二、圓錐曲線方程:
1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;
2、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線或c2=a2+b2
3、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長(zhǎng)公式:
三、直線、平面、簡(jiǎn)單幾何體:
1、學(xué)會(huì)三視圖的分析:
2、斜二測(cè)畫(huà)法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);
(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
(1)柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
(2)錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
。3)臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
。4)球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
。2)平面與平面平行:①線面平行面面平行。
。3)垂直問(wèn)題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
(1)異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
(2)直線與平面所成的角:直線與射影所成的`角
四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問(wèn)題、曲線切線問(wèn)題)
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.
2、導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率
、賙=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;
、荩虎;⑦;⑧。
4.、導(dǎo)數(shù)的四則運(yùn)算法則:
5、導(dǎo)數(shù)的應(yīng)用:
。1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
。2)求極值的步驟:
①求導(dǎo)數(shù);
②求方程的根;
、哿斜恚簷z驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
。3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
五、常用邏輯用語(yǔ):
1、四種命題:
、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.
3、邏輯聯(lián)結(jié)詞:
(1)且(and):命題形式pq;pqpqpqp
。2)或(or):命題形式pq;真真真真假
(3)非(not):命題形式p.真假假真假
假真假真真
假假假假真
“或命題”的真假特點(diǎn)是“一真即真,要假全假”;
“且命題”的真假特點(diǎn)是“一假即假,要真全真”;
“非命題”的真假特點(diǎn)是“一真一假”
4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。
5、全稱命題與特稱命題:
短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱命題。
短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào)表示,含有存在量詞的命題,叫做存在性命題。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
1.萬(wàn)能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a
3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(hào)(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(hào)(x1平方+y1 平方)*根號(hào)(x2 平方+y2 平方)
5.空間向量:同上推論 (提示:向量a={x,y,z})
6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2
7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方
【高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)07-13
高二知識(shí)點(diǎn)數(shù)學(xué)總結(jié)歸納06-15
高二知識(shí)點(diǎn)數(shù)學(xué)總結(jié)歸納02-02
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-06
高二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)07-12
數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)歸納07-25
【熱】高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-05
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【薦】06-05