亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 公倍數(shù)和公因數(shù)教案

      時間:2023-03-03 12:56:00 教案 投訴 投稿
      • 相關推薦

      公倍數(shù)和公因數(shù)教案

        作為一名無私奉獻的老師,很有必要精心設計一份教案,教案是教材及大綱與課堂教學的紐帶和橋梁。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編為大家整理的公倍數(shù)和公因數(shù)教案,歡迎閱讀與收藏。

      公倍數(shù)和公因數(shù)教案

      公倍數(shù)和公因數(shù)教案1

        在四年級(下冊)教材里,學生已經(jīng)建立了倍數(shù)和因數(shù)的概念,會找10以內(nèi)自然數(shù)的倍數(shù),100以內(nèi)自然數(shù)的因數(shù)。本單元繼續(xù)教學倍數(shù)和因數(shù)的知識,要理解公倍數(shù)、最小公倍數(shù)和公因數(shù)、最大公因數(shù)的意義,學會找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。為以后進行通分、約分和分數(shù)四則計算作準備。全單元的教學內(nèi)容分三部分編排。

        第22~25頁教學公倍數(shù)。主要是兩個數(shù)的公倍數(shù)、最小公倍數(shù)的意義,求最小公倍數(shù)的方法。

        第26~31頁教學公因數(shù)。包括兩個數(shù)的公因數(shù)、最大公因數(shù)的意義,求最大公因數(shù)的方法。在練習五里還安排了最小公倍數(shù)與最大公因數(shù)的比較。

        第32~36頁實踐與綜合應用。利用郵政編碼、身份證號碼等實例,教學用數(shù)字編碼表示信息。

        在“你知道嗎”里,介紹了我國古代曾經(jīng)用“輾轉(zhuǎn)相除法”求最大公因數(shù),也介紹了現(xiàn)代人們經(jīng)常用“短除法”求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)。在閱讀這材料后,如果學生愿意用短除法求兩個數(shù)的最大公因數(shù)或最小公倍數(shù),是允許的。但是,不要求全體學生掌握和使用短除法。編排的一道思考題,是可以用公因數(shù)知識解決的實際問題。

        1?在現(xiàn)實的情境中教學概念,讓學生通過操作領會公倍數(shù)、公因數(shù)的含義。

        例1教學公倍數(shù)和最小公倍數(shù),例3教學公因數(shù)和最大公因數(shù),都是形成新的數(shù)學概念,都讓學生在操作活動中領會概念的含義。

        例1先用長3厘米、寬2厘米的長方形紙片,分別鋪邊長6厘米和8厘米的正方形,發(fā)現(xiàn)正好鋪滿邊長6厘米的正方形,不能正好鋪滿邊長8厘米的正方形,并從長方形紙片的長、寬和正方形邊長的關系,對鋪滿和不能鋪滿的原因作出解釋。再想像這張長方形紙片還能正好鋪滿哪些正方形,從倍數(shù)的角度規(guī)律,為形成新的數(shù)學概念積累豐富的感性材料。然后揭示公倍數(shù)與最小公倍數(shù)的含義,把感性認識提升成理性認識。

        教材選擇長方形紙片鋪正方形的活動教學公倍數(shù),是因為這一活動能吸引學生發(fā)現(xiàn)和提出問題,能引導學生思考。學生用同一張長方形紙片鋪兩個不同的正方形,面對出現(xiàn)的兩種結果,會提出“為什么有時正好鋪滿、有時不能”,“什么時候正好鋪滿、什么時候不能”這些有研究價值的問題。他們沿著正方形的邊鋪長方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關,于是產(chǎn)生進一步研究正方形邊長和長方形長、寬之間關系的愿望。

        分析正方形的邊長和長方形長、寬之間的關系,按學生的認知規(guī)律,設計成兩個層次: 第一個層次聯(lián)系 鋪的過程與結果,從兩個正方形的邊長除以長方形的長、寬沒有余數(shù)和有余數(shù)的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據(jù)正好鋪滿邊長6厘米的正方形、不能正好鋪滿邊長8厘米的正方形的經(jīng)驗,聯(lián)想還能正好鋪滿邊長是幾厘米的正方形。先找到這些正方形,把它們的邊長從小到大排列,知道這樣的正方形有無數(shù)多個。再用“既是2的倍數(shù),又是3的倍數(shù)”概括地描述這些正方形邊長的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認識有重要的支持作用。

        讓學生在現(xiàn)實情境中,通過活動領悟公倍數(shù)的含義,不僅體現(xiàn)在例題的教學中,還落實到練習里。第23頁“練一練”在2的倍數(shù)上畫“?”,在5的倍數(shù)上畫“○”。從數(shù)表里的10、20、30三個數(shù)既畫了“?”又畫了“○”,體會它們既是2的倍數(shù),又是5的倍數(shù),是2和5的公倍數(shù)。練習四第4、7、8題都是與公倍數(shù)有關的實際問題,讓學生通過涂顏色、填表格、圈日期等活動體會公倍數(shù)的含義。

        例3教學公因數(shù)、最大公因數(shù)的含義,也通過“鋪”的活動組織教學。與例1不同的是,例3用2張邊長不同的正方形紙片分別去鋪同一個長方形,是形成公因數(shù)概念的需要。例題編寫和練習編排與教學公倍數(shù)相似,這里不再重復。

        2?突出概念的內(nèi)涵、外延,讓學生準確理解概念。

        概念的內(nèi)涵是指這個概念所反映的一切對象的共同的本質(zhì)屬性。公倍數(shù)是幾個數(shù)公有的倍數(shù),公因數(shù)是幾個數(shù)公有的因數(shù),可見“幾個數(shù)公有的”是公倍數(shù)和公因數(shù)這兩個概念的本質(zhì)屬性。在倍數(shù)、因數(shù)的基礎上教學公倍數(shù)、公因數(shù),關鍵在于突出“公有”的含義。

        教材用“既是……又是……”的描述,讓學生理解“公有”的意思。例1先聯(lián)系長3厘米、寬2厘米的長方形紙片正好鋪滿邊長6厘米、12厘米、24厘米……的正方形這些現(xiàn)象,從正方形的邊長分別除以長方形紙的長和寬都沒有余數(shù),得出正方形的邊長“既是2的倍數(shù),又是3的倍數(shù)”,一方面概括了這些正方形邊長的特點,另一方面讓學生體會“既是……又是……”的意思。然后在“6、12、18、24……既是2的倍數(shù),又是3的.倍數(shù),它們是2和3的公倍數(shù)”這句話里把“既是……又是……”進一步概括為“公倍數(shù)”,形成公倍數(shù)的概念。

        集合圖能直觀形象地顯示公倍數(shù)、公因數(shù)的含義。第23頁把6的倍數(shù)與9的倍數(shù)分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數(shù)既是6的倍數(shù),也是9的倍數(shù),是6和9的公倍數(shù)。先觀察這個集合圖,再填寫第24頁的集合圖,學生能進一步體會公倍數(shù)的含義。

        概念的外延是指這個概念包括的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,加強對概念的認識。例1在揭示2和3的公倍數(shù)的概念,指出它們的公倍數(shù)是6、12、18、24……后,提出“8是2和3的公倍數(shù)嗎”這個問題,利用反例凸現(xiàn)公倍數(shù)的含義。讓學生明白8只是2的倍數(shù),不是3的倍數(shù),從而進一步明確公倍數(shù)的概念。練習四第4題先在表格里分別寫出4、5、6的倍數(shù),再尋找4和5、5和6、4和6的公倍數(shù),也有助于學生識別概念的外延。

        3?運用數(shù)學概念,讓學生探索找兩個數(shù)的最小公倍數(shù)、最大公因數(shù)的方法。

        本單元只教學兩個數(shù)的公倍數(shù)、最小公倍數(shù)和兩個數(shù)的公因數(shù)、最大公因數(shù)。因為這些是最基礎的數(shù)學知識,在約分和通分時應用最多。只要這些基礎知識扎實,即使遇到三個分數(shù)的通分,學生也能靈活處理。不編排例題教學短除法求最小公倍數(shù)和最大公因數(shù),而是采用寫出兩個數(shù)的倍數(shù)或因數(shù),找出它們的最小公倍數(shù)或最大公因數(shù)的方法。這樣安排的目的是,在運用概念解決問題的過程中,進一步加強數(shù)學概念的教學。

        例2教學求兩個數(shù)的最小公倍數(shù),出現(xiàn)了多種解決問題的方法,這些方法的思路都公倍數(shù)和最小公倍數(shù)的概念,從6和9的公倍數(shù)、最小公倍數(shù)的意義引發(fā)出來。學生可能先分別寫出6和9的倍數(shù),再找出它們的公倍數(shù)和最小公倍數(shù)。由于倍數(shù)需一個一個地寫,還要逐個逐個地比,所以得出公倍數(shù)和最小公倍數(shù)比較慢。學生也可能在9的倍數(shù)里找6的倍數(shù),只要依次想出9的倍數(shù)(即9×1、9×2、9×3……的積),逐一判斷是不是6的倍數(shù),操作比較方便。尤其求兩個較小數(shù)(不超過10)的最小公倍數(shù)時,更能顯出這種方法的優(yōu)點。當然,在6的倍數(shù)里找9的倍數(shù),也是一種方法,但沒有9的倍數(shù)里找6的倍數(shù)快捷。教材安排學生在交流中體會各種方法,首先是理解各種方法的共同點,都在尋找既是6的倍數(shù)、又是9的倍數(shù),而且是盡量小的那個數(shù)。然后是理解各種方法的個性特點,從中作己的選擇。

        例4求兩個數(shù)的最大公因數(shù),教學方法和例2相似。求8和12的最大公因數(shù)的幾種方法中,教材呈現(xiàn)的第一種方法比較適宜多數(shù)學生。因為一個數(shù)的因數(shù)的個數(shù)是有限的,先寫出兩個數(shù)的全部因數(shù),再找出最大公因數(shù),操作不麻煩。第二種方法從小到大依次想較小數(shù)的因數(shù),稍不留心就會遺漏某一個因數(shù)。練習五編排第3題的意圖就在于此。

        練習四第5題在初步學會求兩個數(shù)的最小公倍數(shù)之后安排,兩個色塊分別呈現(xiàn)最小公倍數(shù)的兩種特殊情況。左邊的色塊里,每組的兩個數(shù)之間有倍數(shù)與因數(shù)關系,它們的最小公倍數(shù)是較大的那個數(shù)。右邊的色塊里,每組兩個數(shù)的最小公倍數(shù)是它們的乘積。練習五第6題是初步會求兩個數(shù)的最大公因數(shù)后安排的。左邊色塊里,每組的兩個數(shù)之間也有倍數(shù)與因數(shù)的關系,它們的最大公因數(shù)是較小的那個數(shù)。右邊色塊里,每組兩個數(shù)的最大公因數(shù)是1。這些特殊情況,在通分和約分時會經(jīng)常出現(xiàn)。教學時可以按色塊進行,先分別求出同一色塊四組數(shù)的最小公倍數(shù)或最大公因數(shù),再找出相同的特點,通過交流內(nèi)化成求最小公倍數(shù)和最大公因數(shù)的技能。要注意的是,學生有倍數(shù)與因數(shù)的知識,能夠理解同組兩個數(shù)之間的倍數(shù)、因數(shù)關系,以及它們的最小公倍數(shù)和最大公因數(shù)的規(guī)律。由于新教材不講互質(zhì)數(shù),也不教短除法,所以兩個互質(zhì)數(shù)的最小公倍數(shù)是它們的乘積、最大公因數(shù)是1,這些特殊情況,只能在具體對象中感受,不宜深入研究原因,更不要出結語讓學生記憶。第9題分別寫出1、2、3、4……20這些數(shù)與3、2、4、5的最大公因數(shù),在發(fā)現(xiàn)有趣規(guī)律的同時,也在感受兩個數(shù)的最大公因數(shù)的兩種特殊情況。

      公倍數(shù)和公因數(shù)教案2

        教學內(nèi)容:教科書第30頁,練習五第12~14題、思考題。

        教學目標:

        1.通過練習,使學生進一步掌握求兩個數(shù)最大公因數(shù)和最小公倍數(shù)的方法,進行有條理思考。

        2.通過練習,使學生建立合理的認知結構,鍛煉學生的思維,提高解決實際問題的能力。

        教學重點:進一步理解公倍數(shù)和公因數(shù)的含義,弄清它們的聯(lián)系與區(qū)別。

        教學難點:弄清公倍數(shù)和公因數(shù)聯(lián)系與區(qū)別。

        教學過程:

        一、揭示課題

        今天我們繼續(xù)完成一些公因數(shù)、公倍數(shù)的有關練習。

        二、基礎訓練

        1.寫出36和24的公因數(shù),最大公因數(shù)是多少?

        2.寫出100以內(nèi)10和6的公倍數(shù),最小公倍數(shù)是多少?

        學生獨立完成,匯報交流。

        說說自己是用什么方法找到的?

        三、綜合練習

        1.完成練習五第12題。

        誰能說說什么數(shù)是兩個數(shù)的公倍數(shù)?兩個數(shù)的公因數(shù)指什么?

        在書上完成連線后匯報方法。

        你是怎樣找出24和16的公因數(shù)的?你是怎樣找到2和5的公倍數(shù)的?

        2.完成第13題。

        獨立完成。交流各自方法。

        3.完成第14題。

        獨立完成。交流各自方法。

        求最大公因數(shù)和最小公倍數(shù)的方法有什么相同和不同?

        什么情況下可以直接寫出兩個數(shù)的最大公因數(shù)?什么情況下可以直接寫出兩個數(shù)的最小公倍數(shù)?

        4.完成思考題。

       。1)小組討論方法。

        (2)指導解法。

        把46塊水果糖分給同學后剩1塊,也就是同學們分了多少塊糖?(46-1)38塊巧克力分給同學后剩3塊,也就是分了多少塊巧克力?(38-3)每種糖都是平均分給這個小組的同學,因此這個小組的人數(shù)既是45的因數(shù),又是35的因數(shù)。要求小組最多有幾人,就是求45和35的什么?(最大公因數(shù))(45,35)=5因此這個組最多有5名同學。

        5.閱讀“你知道嗎”介紹了我國古代求兩個數(shù)的'最大公因數(shù)的重要方法————輾轉(zhuǎn)相除發(fā)法,以及用短除法求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)的符號表示方法

        四、課堂

        大家在學習公倍數(shù)和公因數(shù)這一單元時,首先要明白公倍數(shù)和公因數(shù)的意義,最大公因數(shù)和最小公倍數(shù)的意義,其次要掌握找公倍數(shù)、公因數(shù)、最小公倍數(shù)、最大公因數(shù)的方法,才能為后面的學習做好準備。

      公倍數(shù)和公因數(shù)教案3

        一、教學內(nèi)容

        教材分兩段:

        例1教學公倍數(shù)和最小公倍數(shù)的認識,例2教學求兩個自然數(shù)的公倍數(shù)和最小公倍數(shù);

        例3教學公因數(shù)和最大公因數(shù)的認識,例4教學求兩個自然數(shù)的公因數(shù)和最大公因數(shù)。

        安排了實踐與綜合應用“數(shù)字與信息”。

        二、教材編寫特點和教學建議

        1.借助操作活動,經(jīng)歷概念的形成過程。

        以往教學公倍數(shù)的概念,通常是直接找出兩個自然數(shù)的倍數(shù),然后讓學生發(fā)現(xiàn)有的倍數(shù)是兩個數(shù)公有的,從而揭示公倍數(shù)和最小公倍數(shù)的概念。公因數(shù)和最大公因數(shù)的教學同樣如此。本單元教材注意以直觀的操作活動,讓學生經(jīng)歷公倍數(shù)和公因數(shù)概念的形成過程。

        這樣安排有兩點好處:

        一是學生通過操作活動,能體會公倍數(shù)和公因數(shù)的實際背景,加深對抽象概念的理解;

        二是有利于改善學習方式,便于學生通過操作和交流經(jīng)歷學習過程。

        以公倍數(shù)為例,教學時應讓學生經(jīng)歷下面幾個環(huán)節(jié):

        第一,準備好必要的圖形。要為學生準備長3厘米、寬2厘米的長方形,邊長6厘米和8厘米的正方形,也要準備邊長為12、18、24厘米等不同的正方形。

        第二,經(jīng)歷操作活動。讓學生按要求自主操作,發(fā)現(xiàn)用長3厘米、寬2厘米的長方形可以正好鋪滿邊長6厘米的正方形,而不能正好鋪滿邊長8厘米的正方形。在發(fā)現(xiàn)結果的同時,還應引導學生聯(lián)系除法算式進行思考。這是對直觀操作活動的初步抽象。

        第三,把初步發(fā)現(xiàn)的結論進行類推,先自己嘗試看還能鋪滿邊長是多少的正方形,再在小組里交流。不難發(fā)現(xiàn)能正好鋪滿邊長12厘米、18厘米、24厘米等的正方形;在此基礎上,還應引導學生思考12、18、24等這些邊長和長方形的長、寬有什么關系。

        第四,揭示公倍數(shù)和最小公倍數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。

        第五,判斷8是不是2和3的'公倍數(shù),讓學生通過反例進一步認識公倍數(shù)。理解概念的外延。在此基礎上,教材注意借助直觀的集合圖顯示公倍數(shù)的意義。公因數(shù)的教學同樣如此。

        為了幫助學生加深對最小公倍數(shù)和最大公因數(shù)的理解,教材在練習中安排了一些實際問題。如第25頁第7題,先引導學生用列表的策略通過列舉找到答案,再引導學生聯(lián)系最小公倍數(shù)的知識解決問題。第8題也可用最小公倍數(shù)解決問題,但也允許學生用列表的策略列舉出答案。第29頁第10題讓學生先在圖中畫一畫找到答案,也可讓學生聯(lián)系最大公因數(shù)的知識解決問題。第11題為學生提供了彩帶圖,學生可以在圖中畫一畫,也可以直接用最大公因數(shù)的知識思考。

        2.提倡思考方法多樣化,找公倍數(shù)和公因數(shù)。

        課程標準只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的自然數(shù)中,能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。

        不教學用分解質(zhì)因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個原因:

        一是通過列舉出兩個數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對公倍數(shù)和公因數(shù)意義的理解;

        二是學生對用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學生的學習負擔。在教學找公倍數(shù)或公因數(shù)時,應提倡思考方法多樣化。以求8和12的公因數(shù)為例,學生可能會分別寫出8和12的所有因數(shù),再找一找;也可能先找出8的因數(shù),再從8的因數(shù)中找出12的因數(shù),或著先找出12的因數(shù),再從中找出8的因數(shù)。

        在找出公倍數(shù)或公因數(shù)之后,還應引導學生用集合圖表示出來。要讓學生經(jīng)歷填集合圖的過程,明確集合圖中每一部分的數(shù)表示的意義,體會初步的集合思想。

        對于兩個數(shù)有特殊關系時的最小公倍數(shù)和最大公因數(shù),教材在練習中安排,引導學生探索簡單的規(guī)律。由于教材不講互質(zhì)數(shù),所以兩個互質(zhì)數(shù)的最小公倍數(shù)是它們的乘積,最大公因數(shù)是1這樣的結論不要出現(xiàn),只要求學生在具體的對象中感受。

        為了拓寬學生對求最小公倍數(shù)和最大公因數(shù)方法的認識,教材在“你知道嗎”欄目里介紹了“輾轉(zhuǎn)相除法”求最大公因數(shù)和用短除法求最大公因數(shù)和最小公倍數(shù),并介紹了兩個數(shù)的最大公因數(shù)和最小公倍數(shù)的符號表示。教學時,可以讓學生結合閱讀進行思考。必要時,教師可以進行簡單的講解。

        3.通過調(diào)查、交流和嘗試,感受數(shù)在表達信息中的作用。

        教學“數(shù)字與信息”這一實踐與綜合應用時,應注意引導學生通過調(diào)查和交流參與活動,感受數(shù)字在表達信息中的作用。

        課前調(diào)查的內(nèi)容有:

       。1)110、112、114、120等特殊電話號碼是什么號碼;

       。2)自己所在學校和家庭居住地的郵政編碼;

       。3)自己家庭成員的出生日期和身份證號碼;

       。4)生活中用常見的數(shù)字編碼表達信息的例子;

       。5)自己學籍卡上的學籍號。課后調(diào)查的內(nèi)容有:

       。1)去郵局調(diào)查有關郵政編碼的其他信息;

       。2)生活中還有哪些常見的數(shù)字編碼。教學時,應引導學生充分開展交流活動:比如,為什么有些編號的開頭是0?怎樣從身份證中看出一個人出生的日期?身份證上的數(shù)字編碼有哪些用處?等等。

        在此基礎上,教材在“做一做”中讓學生結合實際問題,嘗試用數(shù)字編碼表達信息。比如,為某賓館的兩幢客房大樓的房間編號,為一年級新生編號,還安排了與方位和距離聯(lián)系的問題,用編碼表示家大約在學校的什么位置。

        教學時,可以根據(jù)需要和時間情況,靈活安排教學時間。

      公倍數(shù)和公因數(shù)教案4

        劉浩中心小學許夏敏

        教學目標:1進一步加深學生對方程意義的理解,鞏固用等式的性質(zhì)解簡易方程的方法,理解簡單實際問題中數(shù)量關系,并能根據(jù)等量關系解決實際問題。

        2進一步理解公倍數(shù)和公因數(shù),最小公倍數(shù)和最大公因數(shù)的意義,掌握求最大公因數(shù)和最小公倍數(shù)的方法。

        3通過小組合作交流,培養(yǎng)學生的數(shù)學交流能力和合作能力。

        教學重點:理解方程的意義,鞏固解方程的方法,進一步掌握求最小公倍數(shù)和最大公因數(shù)的方法。

        教學難點:理解實際問題中的數(shù)量關系,根據(jù)數(shù)量關系列方程解答。

        教學實施:一、疏通概念

        1、同學們,本學期的內(nèi)容已經(jīng)全部學完了。從今天開始,我們要對所有的知識進行與復習。首先讓我們一起走進“數(shù)的世界”,在十個單元中哪些是與數(shù)打交道呢?根據(jù)學生回答板書方程

        公倍數(shù)與公因數(shù)

        認識分數(shù)

        分數(shù)的基本性質(zhì)

        分數(shù)的加減法

        2、揭題

        今天這節(jié)課我們先來復習方程,公倍數(shù)與公因數(shù)(出示課題)

        3、討論與思考:本學期學習了方程的哪些知識?

        什么是公倍數(shù)與公因數(shù)?

        怎樣求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)?

        二、專項練習

        1、方程的復習

       、排c練習第1題,在方程下面打√,集體匯報時說出為什么不是方程?

        等式

        方程

        X+2.5<828-12=165a分別叫什么?你覺得方程與等式有什么關系?你能用一副圖來表示嗎?

       、婆c復習第2題

        提問:根據(jù)什么來解方程?指名4人板演,校對時說說是怎么想的?

        出示練一練,找出括號中方程的.解

       、3x=1.5(x=0.5x=2)

        ②x-210=30(x=240x=180)

       、踴÷5=120(x=24x=600)

       、橇蟹匠探鉀Q實際問題

       ?米11.7平方米?米

        2.7米

        6.9米3.9米

        學生獨立完成,集體訂正時說說根據(jù)什么數(shù)量關系式列方程的?

        教師,用方程計算可以使很多問題變的簡單,容易解決。

       、扰c復習第4題學生讀題后獨立用方程解決。

        2、公倍數(shù)和公因數(shù)的復習

        對公倍數(shù)和公因數(shù)你有那些了解?怎樣求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)呢?

        出示練習①寫出每組數(shù)的最小公倍數(shù)

        6和94和82和3

       、趯懗雒拷M數(shù)的最大公因數(shù)

        18和2415和602和3

        請做得快的同學介紹經(jīng)驗

        三、全課

        今天我們復習了什么,你有哪些收獲?

        四、課堂作業(yè)

        與復習第3題、第5題、第6題。

        教學反思

        這是一堂復習課,主要復習方程、公倍數(shù)和公因數(shù)兩個單元的內(nèi)容。由于課堂時間有限,因此對知識的回顧與還不是很系統(tǒng)。特別是對潛能生而言,教師的提問不能及時溝起他們對知識概念的回憶,因此跟基礎較好的同學相比就形成了鮮明的落差。

        在列方程解決實際問題時,正確掌握題中的數(shù)量關系是關鍵,也是學生理解中的難點。大部分學生在列方程時,因為沒能找出題中的數(shù)量關系而把方程列錯,或者方程列到了,卻不能把方程抽象成數(shù)量關系式。諸如這些現(xiàn)象,主要是學生的抽象能力還不夠完善,分析問題的能力還不夠仔細,深入,有待進一步的發(fā)展。

        在公倍數(shù)和公因數(shù)一單元中,問題不大,主要是求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。對較大的兩個數(shù),如求100以內(nèi)兩個數(shù)的最小公倍數(shù)和最大公因數(shù),出錯率較大。因此課后還應多補充一些相應的練習。

      公倍數(shù)和公因數(shù)教案5

        教學內(nèi)容:教科書第25頁,練習四第5~8題。

        教學目標:

        1、通過練習與對比,使學生發(fā)現(xiàn)和掌握求兩個數(shù)最小公倍數(shù)的一些簡捷方法,進行有條理的思考。

        2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。

        3、在學生探索與交流的合作過程中,進一步發(fā)展學生與同伴合作交流的意識和能力,感受數(shù)學與生活的聯(lián)系。

        教學過程:

        一、基本訓練

        1、我們已經(jīng)掌握了找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。

        (板書課題:公倍數(shù)和最小公倍數(shù)練習)

        2、填空。

        5的倍數(shù)有:( )

        7的倍數(shù)有:( )

        5和7的公倍數(shù)有:( )

        5和7的最小公倍數(shù)是:( )

        3、完成練習四第5題。

        (1)理解題意,獨立找出每組數(shù)的最小公倍數(shù)。

        (2)匯報結果,集體評講。

       。3)觀察第一組中兩個數(shù)的`最小公倍數(shù),看看有什么發(fā)現(xiàn)?

        每題中的兩個數(shù)有什么特征呢?(倍數(shù)關系)可以得出什么結論?

       。4)第二組中兩個數(shù)的最小公倍數(shù)有什么特征?(是這兩個數(shù)的乘積)

        在有些情況下,兩個數(shù)的最小公倍數(shù)是這兩個數(shù)的乘積。

        4、完成練習四第6題。

        你能運用上一題的規(guī)律直接寫出每題中兩個數(shù)的最小公倍數(shù)嗎?

        交流,匯報。

        說說你是怎么想的?

        二、提高訓練

        1、完成練習四第7題。

       。1)理解題意,獨立完成填表。

        (2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?

        你還有其他方法解決這個問題嗎?(7和8的最小公倍數(shù)是56)

        2、完成練習四第8題。

       。1)理解題意。

       。2)“每隔6天去一次”是指7月31日去過以后,下一次訓練日期是8月6日!懊扛8天去一次”指的是什么呢?

        你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)

        你是怎樣知道的?

        要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數(shù))

        三、課堂小結

        通過練習,同學們又掌握了一些比較快的求兩個數(shù)最小公倍數(shù)的方法,并能運用這些方法解決一些實際問題。

        在小組中互相說說自己本節(jié)課的收獲。

      【公倍數(shù)和公因數(shù)教案】相關文章:

      公因數(shù)公倍數(shù)教學反思04-12

      《公因數(shù)和最大公因數(shù)》教學設計03-24

      公倍數(shù)與最小公倍數(shù)教案02-26

      《公因數(shù)和最大公因數(shù)》優(yōu)秀的教學反思(精選7篇)03-17

      《找最大公因數(shù)》教案08-26

      最小公倍數(shù)教案01-20

      《最小公倍數(shù)》教案03-03

      五年級下冊《公因數(shù)和最大公因數(shù)》教學設計(精選5篇)03-24

      《最小公倍數(shù)》教案9篇04-04