亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高中數(shù)學(xué)教案

      時(shí)間:2023-02-18 16:45:32 教案 投訴 投稿

      高中數(shù)學(xué)教案集合15篇

        作為一位不辭辛勞的人民教師,就不得不需要編寫(xiě)教案,編寫(xiě)教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。寫(xiě)教案需要注意哪些格式呢?以下是小編幫大家整理的高中數(shù)學(xué)教案,歡迎閱讀與收藏。

      高中數(shù)學(xué)教案集合15篇

      高中數(shù)學(xué)教案1

        教學(xué)目標(biāo)

       。1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;

        (2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

        (3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類(lèi)比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;

        教學(xué)重點(diǎn)難點(diǎn)

        重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

        難點(diǎn)是解組合的應(yīng)用題.

        教學(xué)過(guò)程設(shè)計(jì)

        (-)導(dǎo)入新課

       。ń處熁顒(dòng))提出下列思考問(wèn)題,打出字幕.

       。圩帜唬菀粭l鐵路線(xiàn)上有6個(gè)火車(chē)站,(1)需準(zhǔn)備多少種不同的普通客車(chē)票?(2)有多少種不同票價(jià)的普通客車(chē)票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?

       。▽W(xué)生活動(dòng))討論并回答.

        答案提示:(1)排列;(2)組合.

        [評(píng)述]問(wèn)題(1)是從6個(gè)火車(chē)站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車(chē)站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.

        設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的.上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.

        (二)新課講授

        [提出問(wèn)題 創(chuàng)設(shè)情境]

       。ń處熁顒(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.

       。圩帜唬1.排列的定義是什么?

        2.舉例說(shuō)明一個(gè)組合是什么?

        3.一個(gè)組合與一個(gè)排列有何區(qū)別?

       。▽W(xué)生活動(dòng))閱讀回答.

        (教師活動(dòng))對(duì)照課文,逐一評(píng)析.

        設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.

        【歸納概括 建立新知】

       。ń處熁顒(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).

       。圩帜唬菽P停簭 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車(chē)站中甲站→乙站和乙站→甲站是票價(jià)相同的車(chē)票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

        組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱(chēng)之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

       。墼u(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.

       。▽W(xué)生活動(dòng))傾聽(tīng)、思索、記錄.

        (教師活動(dòng))提出思考問(wèn)題.

       。弁队埃 與 的關(guān)系如何?

       。◣熒顒(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

        第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

        第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .

        根據(jù)分步計(jì)數(shù)原理,得到

       。圩帜唬莨1:

        公式2:

       。▽W(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車(chē)站有15種不同的票價(jià)的普通客車(chē)票.

        設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線(xiàn),以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的`形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.

        (三)小結(jié)

       。◣熒顒(dòng))共同小結(jié).

        本節(jié)主要內(nèi)容有

        1.組合概念.

        2.組合數(shù)計(jì)算的兩個(gè)公式.

        (四)布置作業(yè)

        1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

        2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

        3.研究性題:

        在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

        (五)課后點(diǎn)評(píng)

        在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

        作業(yè)參考答案

        2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

        3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形.

        探究活動(dòng)

        同室四人各寫(xiě)一張賀年卡,先集中起來(lái),然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬(wàn)式可有多少種?

        解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來(lái)解.

        解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類(lèi),即:

        甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

        甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

        甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

        由加法原理得,賀卡分配方法有3+3+3=9種.

        解法二 可從利用排列數(shù)和組合數(shù)公式角度來(lái)考慮.這時(shí)還存在正向與逆向兩種思考途徑.

        正向思考,即從滿(mǎn)足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

        逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿(mǎn)足題設(shè)條件的取法.不滿(mǎn)足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

      高中數(shù)學(xué)教案2

        一、預(yù)習(xí)目標(biāo)

        預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問(wèn)題、物理問(wèn)題等的工具,建立實(shí)際問(wèn)題與向量的聯(lián)系。

        二、預(yù)習(xí)內(nèi)容

        閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問(wèn)題、物理問(wèn)題。另外,在思考一下幾個(gè)問(wèn)題:

        1、例1如果不用向量的方法,還有其他證明方法嗎?

        2、利用向量方法解決平面幾何問(wèn)題的“三步曲”是什么?

        3、例3中,

        ⑴為何值時(shí),|F1|最小,最小值是多少?

       、苵F1|能等于|G|嗎?為什么?

        三、提出疑惑

        同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。

        課內(nèi)探究學(xué)案

        一、學(xué)習(xí)內(nèi)容

        1、運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線(xiàn)或線(xiàn)段的平行、垂直、相等、夾角和距離等問(wèn)題。

        2、運(yùn)用向量的有關(guān)知識(shí)解決簡(jiǎn)單的物理問(wèn)題。

        二、學(xué)習(xí)過(guò)程

        探究一:

       。1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線(xiàn)平行或重合"相類(lèi)比,你有什么體會(huì)?

        (2)舉出幾個(gè)具有線(xiàn)性運(yùn)算的幾何實(shí)例。

        例1、證明:平行四邊形兩條對(duì)角線(xiàn)的平方和等于四條邊的平方和。

        已知:平行四邊形ABCD。

        求證:

        試用幾何方法解決這個(gè)問(wèn)題,利用向量的方法解決平面幾何問(wèn)題的.“三步曲”?

        (1)建立平面幾何與向量的聯(lián)系,

        (2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,

       。3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。

        例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?

        探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力。在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力。這些力的問(wèn)題是怎么回事?

        例3,在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?

        請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問(wèn)題,思考下面的問(wèn)題:

        ⑴為何值時(shí),|F1|最小,最小值是多少?

       、苵F1|能等于|G|嗎?為什么?

        例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對(duì)岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問(wèn)行駛航程最短時(shí),所用的時(shí)間是多少(精確到0。1min)?

        變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來(lái),在某一時(shí)刻,它們的位移分別為,(1)寫(xiě)出此時(shí)粒子B相對(duì)粒子A的位移s;(2)計(jì)算s在方向上的投影。

        三、反思總結(jié)

        結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問(wèn)題,體現(xiàn)幾何問(wèn)題。

        代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡(jiǎn)練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長(zhǎng)方形、正方形、直角三角形等平行、垂直等問(wèn)題常用此法。

        本節(jié)主要研究了用向量知識(shí)解決平面幾何問(wèn)題和物理問(wèn)題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問(wèn)題的步驟。

      高中數(shù)學(xué)教案3

        一、指導(dǎo)思想與理論依據(jù)

        數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類(lèi)比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

        二、教材分析

        三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)、本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四)、教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱(chēng)思想發(fā)現(xiàn)任意角與、 、終邊的對(duì)稱(chēng)關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)、同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求、為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位、

        三、學(xué)情分析

        本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容、

        四、教學(xué)目標(biāo)

        (1)、基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;

        (2)、能力訓(xùn)練目標(biāo):能正確運(yùn)用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡(jiǎn)單的.三角函數(shù)求值與化簡(jiǎn);

        (3)、創(chuàng)新素質(zhì)目標(biāo):通過(guò)對(duì)公式的推導(dǎo)和運(yùn)用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力;

        (4)、個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀、

        五、教學(xué)重點(diǎn)和難點(diǎn)

        1、教學(xué)重點(diǎn)

        理解并掌握誘導(dǎo)公式、

        2、教學(xué)難點(diǎn)

        正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式、

        六、教法學(xué)法以及預(yù)期效果分析

        “授人以魚(yú)不如授之以魚(yú)”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究、下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析、

        1、教法

        數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)、

        在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線(xiàn),盡力滲透類(lèi)比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅、

        2、學(xué)法

        “現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情、如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題、

        在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題簡(jiǎn)單應(yīng)用、重現(xiàn)探索過(guò)程、練習(xí)鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí)、

        3、預(yù)期效果

        本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過(guò)程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題、

        七、教學(xué)流程設(shè)計(jì)

        (一)創(chuàng)設(shè)情景

        1、復(fù)習(xí)銳角300,450,600的三角函數(shù)值;

        2、復(fù)習(xí)任意角的三角函數(shù)定義;

        3、問(wèn)題:由,你能否知道sin2100的值嗎?引如新課、

      高中數(shù)學(xué)教案4

        教學(xué)目標(biāo)

        1.了解映射的概念,象與原象的概念,和一一映射的概念.

       。1)明確映射是特殊的對(duì)應(yīng)即由集合 ,集合 和對(duì)應(yīng)法則f三者構(gòu)成的一個(gè)整體,知道映射的特殊之處在于必須是多對(duì)一和一對(duì)一的對(duì)應(yīng);

       。2)能準(zhǔn)確使用數(shù)學(xué)符號(hào)表示映射, 把握映射與一一映射的區(qū)別;

       。3)會(huì)求給定映射的指定元素的象與原象,了解求象與原象的方法.

        2.在概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.

        3.通過(guò)映射概念的學(xué)習(xí),逐步提高學(xué)生對(duì)知識(shí)的探究能力.

        教學(xué)建議

        教材分析

        (1)知識(shí)結(jié)構(gòu)

        映射是一種特殊的對(duì)應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過(guò)下圖表示出來(lái),如圖:

        由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.

       。2)重點(diǎn),難點(diǎn)分析

        本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認(rèn)識(shí).

        ①映射的概念是比較抽象的概念,它是在初中所學(xué)對(duì)應(yīng)的.基礎(chǔ)上發(fā)展而來(lái).教學(xué)中應(yīng)特別強(qiáng)調(diào)對(duì)應(yīng)集合 B中的唯一這點(diǎn)要求的理解;

        映射是學(xué)生在初中所學(xué)的對(duì)應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對(duì)應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對(duì)應(yīng)法則f,由于法則的不同,對(duì)應(yīng)可分為一對(duì)一,多對(duì)一,一對(duì)多和多對(duì)多. 其中只有一對(duì)一和多對(duì)一的能構(gòu)成映射,由此可以看到映射必是“對(duì)B中之唯一”,而只要是對(duì)應(yīng)就必須保證讓A中之任一與B中元素相對(duì)應(yīng),所以滿(mǎn)足一對(duì)一和多對(duì)一的對(duì)應(yīng)就能體現(xiàn)出“任一對(duì)唯一”.

       、诙灰挥成溆衷谟成涞幕A(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.

        教法建議

       。1)在映射概念引入時(shí),可先從學(xué)生熟悉的對(duì)應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對(duì)多、多對(duì)一、多對(duì)一、一對(duì)一四種情況,讓學(xué)生認(rèn)真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對(duì)一和多對(duì)一的對(duì)應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認(rèn)識(shí)從感性認(rèn)識(shí)到理性認(rèn)識(shí).

       。2)在剛開(kāi)始學(xué)習(xí)映射時(shí),為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語(yǔ)言描述,這樣的表示方法讓學(xué)生可以比較直觀的認(rèn)識(shí)映射,而后再選擇用抽象的數(shù)學(xué)符號(hào)表示映射,比如:

        (3)對(duì)于學(xué)生層次較高的學(xué)?梢栽诮o出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點(diǎn),并用自己的語(yǔ)言描述出來(lái),最后教師加以概括,再?gòu)闹幸鲆灰挥成涓拍;?duì)于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

       。4)關(guān)于求象和原象的問(wèn)題,應(yīng)在計(jì)算的過(guò)程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過(guò)方程組解的不同情況(有唯一解,無(wú)解或有無(wú)數(shù)解)加深對(duì)映射的認(rèn)識(shí).

       。5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計(jì)算,最后進(jìn)行小結(jié),教師要起到點(diǎn)撥和深化的作用.

        教學(xué)設(shè)計(jì)方案

        2.1映射

        教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.

        (2)在概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,分析對(duì)比,歸納的能力.

        (3)通過(guò)映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.

        教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認(rèn)識(shí).

        教學(xué)用具:實(shí)物投影儀

        教學(xué)方法:?jiǎn)l(fā)討論式

        教學(xué)過(guò)程:

        一、引入

        在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類(lèi)簡(jiǎn)單的常見(jiàn)函數(shù).在高中,將利用前面集合有關(guān)知識(shí),利用映射的觀點(diǎn)給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細(xì)的概念.

        二、新課

        在前一章集合的初步知識(shí)中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究?jī)蓚(gè)集合的元素與元素之間的對(duì)應(yīng)關(guān)系.這要先從我們熟悉的對(duì)應(yīng)說(shuō)起(用投影儀打出一些對(duì)應(yīng)關(guān)系,共6個(gè))

        我們今天要研究的是一類(lèi)特殊的對(duì)應(yīng),特殊在什么地方呢?

        提問(wèn)1:在這些對(duì)應(yīng)中有哪些是讓A中元素就對(duì)應(yīng)B中唯一一個(gè)元素?

        讓學(xué)生仔細(xì)觀察后由學(xué)生回答,對(duì)有爭(zhēng)議的,或漏選,多選的可詳細(xì)說(shuō)明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個(gè)集中在一起)

        提問(wèn)2:能用自己的語(yǔ)言描述一下這幾個(gè)對(duì)應(yīng)的共性嗎?

        經(jīng)過(guò)師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補(bǔ)充)

      高中數(shù)學(xué)教案5

        教學(xué)目標(biāo)

       。1)掌握直線(xiàn)方程的一般形式,掌握直線(xiàn)方程幾種形式之間的互化.

        (2)理解直線(xiàn)與二元一次方程的關(guān)系及其證明

       。3)培養(yǎng)學(xué)生抽象概括能力、分類(lèi)討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).

        教學(xué)重點(diǎn)、難點(diǎn):直線(xiàn)方程的一般式.直線(xiàn)與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明.

        教學(xué)用具:計(jì)算機(jī)

        教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

        教學(xué)過(guò)程

        下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:

        教學(xué)設(shè)計(jì)思路

       。ㄒ唬┮氲脑O(shè)計(jì)

        前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線(xiàn)方程的方法,看下面問(wèn)題:

        問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線(xiàn)的方程,并觀察方程屬于哪一類(lèi),為什么?

        答:直線(xiàn)方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

        肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:

        問(wèn):求出過(guò)點(diǎn) , 的直線(xiàn)的方程,并觀察方程屬于哪一類(lèi),為什么?

        答:直線(xiàn)方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

        肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”.

        啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)劊扛餍〗M可以討論討論.

        學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:

        【問(wèn)題1】“任意直線(xiàn)的方程都是二元一次方程嗎?”

       。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

        這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.

        學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

        經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

        思路一:…

        思路二:…

        ……

        教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:

        按斜率是否存在,任意直線(xiàn) 的位置有兩種可能,即斜率 存在或不存在.

        當(dāng) 存在時(shí),直線(xiàn) 的截距 也一定存在,直線(xiàn) 的方程可表示為 ,它是二元一次方程.

        當(dāng) 不存在時(shí),直線(xiàn) 的方程可表示為 形式的方程,它是二元一次方程嗎?

        學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

        平面直角坐標(biāo)系中直線(xiàn) 上點(diǎn)的坐標(biāo)形式,與其它直線(xiàn)上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線(xiàn)方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

        綜合兩種情況,我們得出如下結(jié)論:

        在平面直角坐標(biāo)系中,對(duì)于任何一條直線(xiàn),都有一條表示這條直線(xiàn)的關(guān)于 、 的二元一次方程.

        至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線(xiàn)方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”.

        同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

        學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

        這樣上邊的結(jié)論可以表述如下:

        在平面直角坐標(biāo)系中,對(duì)于任何一條直線(xiàn),都有一條表示這條直線(xiàn)的形如 (其中 、 不同時(shí)為0)的二元一次方程.

        啟發(fā):任何一條直線(xiàn)都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的'問(wèn)題呢?

        【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線(xiàn)嗎?

        不難看出上邊的結(jié)論只是直線(xiàn)與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?

        師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

        回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即

       。1)當(dāng) 時(shí),方程可化為

        這是表示斜率為 、在 軸上的截距為 的直線(xiàn).

        (2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為

        這表示一條與 軸垂直的直線(xiàn).

        因此,得到結(jié)論:

        在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線(xiàn).

        為方便,我們把 (其中 、 不同時(shí)為0)稱(chēng)作直線(xiàn)方程的一般式是合理的.

        【動(dòng)畫(huà)演示】

        演示“直線(xiàn)各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線(xiàn).

        至此,我們的第二個(gè)問(wèn)題也圓滿(mǎn)解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線(xiàn)與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線(xiàn)方程的一般形式是對(duì)直線(xiàn)特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.

       。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

        略

      高中數(shù)學(xué)教案6

        教學(xué)準(zhǔn)備

        教學(xué)目標(biāo)

        熟悉兩角和與差的正、余公式的.推導(dǎo)過(guò)程,提高邏輯推理能力。

        掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問(wèn)題。

        教學(xué)重難點(diǎn)

        熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

        教學(xué)過(guò)程

        復(fù)習(xí)

        兩角差的余弦公式

        用- B代替B看看有什么結(jié)果?

      高中數(shù)學(xué)教案7

        教學(xué)目標(biāo)1.進(jìn)一步理解線(xiàn)性規(guī)劃的概念;會(huì)解簡(jiǎn)單的線(xiàn)性規(guī)劃問(wèn)題;

        2.在運(yùn)用建模和數(shù)形結(jié)合等數(shù)學(xué)思想方法分析、解決問(wèn)題的過(guò)程中;提高解決問(wèn)題的能力;

        3.進(jìn)一步提高學(xué)生的合作意識(shí)和探究意識(shí)。

        教學(xué)重點(diǎn):線(xiàn)性規(guī)劃的概念及其解法

        教學(xué)難點(diǎn)

        代數(shù)問(wèn)題幾何化的過(guò)程

        教學(xué)方法:啟發(fā)探究式

        教學(xué)手段運(yùn)用多媒體技術(shù)

        教學(xué)過(guò)程:1.實(shí)際問(wèn)題引入。

        問(wèn)題一:小王和小李合租了一輛小轎車(chē)外出旅游.小王駕車(chē)平均速度為每小時(shí)70公里,平均耗油量為每小時(shí)6公升;小李駕車(chē)平均速度為每小時(shí)50公里,平均耗油量為每小時(shí)4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車(chē)時(shí)間累計(jì)不能超過(guò)12小時(shí).問(wèn)小王和小李分別駕車(chē)多少時(shí)間時(shí),行駛路程最遠(yuǎn)?

        2.探究和討論下列問(wèn)題。

        (1)實(shí)際問(wèn)題轉(zhuǎn)化為一個(gè)怎樣的數(shù)學(xué)問(wèn)題?

        (2)滿(mǎn)足不等式組①的條件的點(diǎn)構(gòu)成的區(qū)域如何表示?

        (3)關(guān)于x、y的一個(gè)表達(dá)式z=70x+50y的幾何意義是什么?

        (4)z的幾何意義是什么?

        (5)z的最大值如何確定?

        讓學(xué)生達(dá)成以下共識(shí):小王駕車(chē)時(shí)間x和小李駕車(chē)時(shí)間y受到時(shí)間(12小時(shí))和油量(60公升)的限制,即

        x+y≤12

        6x+4y≤60 ①

        x≥0

        y≥0

        行駛路程可以表示成關(guān)于x、y的一個(gè)表達(dá)式:z=70x+50y 由數(shù)形結(jié)合可知:經(jīng)過(guò)點(diǎn)B(6,6)的直線(xiàn)所對(duì)應(yīng)的z最大.

        則zmax=6×70+6×50=720

        結(jié)論:小王和小李分別駕車(chē)6小時(shí)時(shí),行駛路程最遠(yuǎn)為720公里.

        解題反思:

        問(wèn)題解決過(guò)程中體現(xiàn)了那些重要的數(shù)學(xué)思想?

        3.線(xiàn)性規(guī)劃的有關(guān)概念。

        什么是“線(xiàn)性規(guī)劃問(wèn)題”?涉及約束條件、線(xiàn)性約束條件、目標(biāo)函數(shù)、線(xiàn)性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念.

        4.進(jìn)一步探究線(xiàn)性規(guī)劃問(wèn)題的解。

        問(wèn)題二:若小王和小李駕車(chē)平均速度為每小時(shí)60公里和40公里,其它條件不變,問(wèn)小王和小李分別駕車(chē)多少時(shí)間時(shí),行駛路程最遠(yuǎn)?

        要求:請(qǐng)你寫(xiě)出約束條件、目標(biāo)函數(shù),作出可行域,求出最優(yōu)解。

        問(wèn)題三:如果把不等式組①中的兩個(gè)“≤”改為“≥”,是否存在最優(yōu)解?

        5.小結(jié)。

        (1)數(shù)學(xué)知識(shí);(2)數(shù)學(xué)思想。

        6.作業(yè)。

        (1)閱讀教材:P.60-63;

        (2)課后練習(xí):教材P.65-2,3;

        (3)在自己生活中尋找一個(gè)簡(jiǎn)單的線(xiàn)性規(guī)劃問(wèn)題,寫(xiě)出約束條件,確定目標(biāo)函數(shù),作出可行域,并求出最優(yōu)解。

        《一個(gè)數(shù)列的研究》教學(xué)設(shè)計(jì)

        教學(xué)目標(biāo):

        1.進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);

        2.在對(duì)一個(gè)數(shù)列的探究過(guò)程中,提高提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力;

        3.進(jìn)一步提高問(wèn)題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。

        教學(xué)重點(diǎn):

        問(wèn)題的提出與解決

        教學(xué)難點(diǎn):

        如何進(jìn)行問(wèn)題的探究

        教學(xué)方法:

        啟發(fā)探究式

        教學(xué)過(guò)程:

        問(wèn)題:已知{an}是首項(xiàng)為1,公比為 的無(wú)窮等比數(shù)列。對(duì)于數(shù)列{an},提出你的問(wèn)題,并進(jìn)行研究,你能得到一些什么樣的結(jié)論?

        研究方向提示:

        1.?dāng)?shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來(lái)進(jìn)行研究;

        2.研究所給數(shù)列的項(xiàng)之間的關(guān)系;

        3.研究所給數(shù)列的子數(shù)列;

        4.研究所給數(shù)列能構(gòu)造的新數(shù)列;

        5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來(lái)進(jìn)行研究;

        6.研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。

        針對(duì)學(xué)生的研究情況,對(duì)所提問(wèn)題進(jìn)行歸類(lèi),選擇部分類(lèi)型問(wèn)題共同進(jìn)行研究、分析與解決。

        課堂小結(jié):

        1.研究一個(gè)數(shù)列可以從哪些方面提出問(wèn)題并進(jìn)行研究?

        2.你最喜歡哪位同學(xué)的研究?為什么?

        課后思考題: 1.將{an}推廣為一般的無(wú)窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結(jié)論會(huì)有什么變化?

        2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進(jìn)行類(lèi)比研究?

        開(kāi)展研究性學(xué)習(xí),培養(yǎng)問(wèn)題解決能力

        一、對(duì)“研究性學(xué)習(xí)”和“問(wèn)題解決”的'認(rèn)識(shí) 研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對(duì)應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動(dòng)探究問(wèn)題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說(shuō)是一種學(xué)習(xí)活動(dòng):學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會(huì)生活中選擇課題,以類(lèi)似科學(xué)研究的方式去主動(dòng)地獲取知識(shí)、應(yīng)用知識(shí)、解決問(wèn)題。

        “問(wèn)題解決”(problem solving)是美國(guó)數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號(hào),即認(rèn)為應(yīng)當(dāng)以“問(wèn)題解決”作為學(xué)校數(shù)學(xué)教育的中心。

        問(wèn)題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實(shí)踐能力”。在數(shù)學(xué)教學(xué)活動(dòng)中開(kāi)展研究性學(xué)習(xí)是培養(yǎng)問(wèn)題解決能力的主要途徑。

        二、“問(wèn)題解決”課堂教學(xué)模式的建構(gòu)與實(shí)踐 以研究性學(xué)習(xí)活動(dòng)為載體,以培養(yǎng)問(wèn)題解決能力為核心的課堂教學(xué)模式(以下簡(jiǎn)稱(chēng)為“問(wèn)題解決”課堂教學(xué)模式)試圖通過(guò)問(wèn)題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨(dú)立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問(wèn)題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識(shí)的能力,提高合作意識(shí)、探究意識(shí)和創(chuàng)新意識(shí)。

       。ㄒ唬╆P(guān)于“問(wèn)題解決”課堂教學(xué)模式

        通過(guò)實(shí)施“問(wèn)題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問(wèn)題的方法,開(kāi)掘創(chuàng)造性思維潛力,培養(yǎng)主動(dòng)參與、團(tuán)結(jié)協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺(jué)運(yùn)用數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能和數(shù)學(xué)思想方法分析問(wèn)題、解決問(wèn)題的能力和意識(shí)。

        (二)數(shù)學(xué)學(xué)科中的問(wèn)題解決能力的培養(yǎng)目標(biāo)

        數(shù)學(xué)問(wèn)題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會(huì)審題,會(huì)建模,會(huì)轉(zhuǎn)化,會(huì)歸類(lèi),會(huì)反思,會(huì)編題。

       。ㄈ皢(wèn)題解決”課堂教學(xué)模式的教學(xué)流程

       。ㄋ模皢(wèn)題解決”課堂教學(xué)評(píng)價(jià)標(biāo)準(zhǔn)

        1. 教學(xué)目標(biāo)的確定;

        2. 教學(xué)方法的選擇;

        3. 問(wèn)題的選擇;

        4. 師生主體意識(shí)的體現(xiàn);

        5.教學(xué)策略的運(yùn)用。

       。ㄎ澹┝私鈱W(xué)生的數(shù)學(xué)問(wèn)題解決能力的途徑

        (六)開(kāi)展研究性學(xué)習(xí)活動(dòng)對(duì)教師的能力要求

      高中數(shù)學(xué)教案8

        教學(xué)目標(biāo):

        (1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;

        (2)了解全集、空集的意義。

        (3)掌握有關(guān)子集、全集、補(bǔ)集的符號(hào)及表示方法,會(huì)用它們正確表示一些簡(jiǎn)單的集合,培養(yǎng)學(xué)生的符號(hào)表示的能力;

        (4)會(huì)求已知集合的子集、真子集,會(huì)求全集中子集在全集中的補(bǔ)集;

        (5)能判斷兩集合間的包含、相等關(guān)系,并會(huì)用符號(hào)及圖形(文氏圖)準(zhǔn)確地表示出來(lái),培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

        (6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問(wèn)題、解決問(wèn)題的能力。

        教學(xué)重點(diǎn):

        子集、補(bǔ)集的概念

        教學(xué)難點(diǎn):

        弄清元素與子集、屬于與包含之間的區(qū)別

        教學(xué)用具:

        幻燈機(jī)

        教學(xué)過(guò)程設(shè)計(jì)

        (一)導(dǎo)入新課

        上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識(shí)。

        【提出問(wèn)題】(投影打出)

        已知xx,xx,xx,問(wèn):

        1、哪些集合表示方法是列舉法。

        2、哪些集合表示方法是描述法。

        3、將集M、集從集P用圖示法表示。

        4、分別說(shuō)出各集合中的元素。

        5、將每個(gè)集合中的元素與該集合的關(guān)系用符號(hào)表示出來(lái)、將集N中元素3與集M的關(guān)系用符號(hào)表示出來(lái)。

        6、集M中元素與集N有何關(guān)系、集M中元素與集P有何關(guān)系。

        【找學(xué)生回答】

        1、集合M和集合N;(口答)

        2、集合P;(口答)

        3、(筆練結(jié)合板演)

        4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

        5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結(jié)合板演)

        6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

        【引入】在上面見(jiàn)到的集M與集N;集M與集P通過(guò)元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會(huì)經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問(wèn)題、

        (二)新授知識(shí)

        1、子集

        (1)子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A。

        記作:xx讀作:A包含于B或B包含A

        當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:AxxB或BxxA、

        性質(zhì):①xx(任何一個(gè)集合是它本身的子集)

        ②xx(空集是任何集合的子集)

        【置疑】能否把子集說(shuō)成是由原來(lái)集合中的部分元素組成的集合?

        【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

        因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的空集也是B的子集,而這個(gè)集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

        (2)集合相等:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的.任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,記作A=B。

        例:xx,可見(jiàn),集合x(chóng)x,是指A、B的所有元素完全相同。

        (3)真子集:對(duì)于兩個(gè)集合A與B,如果xx,并且xx,我們就說(shuō)集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

        【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集!

        集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B。

        【提問(wèn)】

        (1)xx寫(xiě)出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

        (2)xx判斷下列寫(xiě)法是否正確

       、賦xAxx②xxAxx③xx④AxxA

        性質(zhì):

        (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

        (2)如果xx,xx,則xx。

        例1xx寫(xiě)出集合x(chóng)x的所有子集,并指出其中哪些是它的真子集、

        解:集合x(chóng)x的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

        【注意】(1)子集與真子集符號(hào)的方向。

        (2)易混符號(hào)

       、佟皒x”與“xx”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如xxR,{1}xx{1,2,3}

       、趝0}與xx:{0}是含有一個(gè)元素0的集合,xx是不含任何元素的集合。

        如:xx{0}。不能寫(xiě)成xx={0},xx∈{0}

        例2xx見(jiàn)教材P8(解略)

        例3xx判斷下列說(shuō)法是否正確,如果不正確,請(qǐng)加以改正、

        (1)xx表示空集;

        (2)空集是任何集合的真子集;

        (3)xx不是xx;

        (4)xx的所有子集是xx;

        (5)如果xx且xx,那么B必是A的真子集;

        (6)xx與xx不能同時(shí)成立、

        解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;

        (2)不正確、空集是任何非空集合的真子集;

        (3)不正確、xx與xx表示同一集合;

        (4)不正確、xx的所有子集是xx;

        (5)正確

        (6)不正確、當(dāng)xx時(shí),xx與xx能同時(shí)成立、

        例4xx用適當(dāng)?shù)姆?hào)(xx,xx)填空:

        (1)xx;xx;xx;

        (2)xx;xx;

        (3)xx;

        (4)設(shè)xx,xx,xx,則AxxBxxC、

        解:(1)0xx0xx;

        (2)xx=xx,xx;

        (3)xx,xx∴xx;

        (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C、

        【練習(xí)】教材P9

        用適當(dāng)?shù)姆?hào)(xx,xx)填空:

        (1)xx;xx(5)xx;

        (2)xx;xx(6)xx;

        (3)xx;xx(7)xx;

        (4)xx;xx(8)xx、

        解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

        提問(wèn):見(jiàn)教材P9例子

        (二)xx全集與補(bǔ)集

        1、補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作xx,即

        、

        A在S中的補(bǔ)集xx可用右圖中陰影部分表示、

        性質(zhì):xxS(xxSA)=A

        如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

        (2)若A={0},則xxNA=N;

        (3)xxRQ是無(wú)理數(shù)集。

        2、全集:

        如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用xx表示。

        注:xx是對(duì)于給定的全集xx而言的,當(dāng)全集不同時(shí),補(bǔ)集也會(huì)不同。

        例如:若xx,當(dāng)xx時(shí),xx;當(dāng)xx時(shí),則xx。

        例5xx設(shè)全集xx,xx,xx,判斷xx與xx之間的關(guān)系。

        解:

        練習(xí):見(jiàn)教材P10練習(xí)

        1、填空:

        xx,xx,那么xx,xx。

        解:xx,

        2、填空:

        (1)如果全集xx,那么N的補(bǔ)集xx;

        (2)如果全集,xx,那么xx的補(bǔ)集xx(xx)=xx、

        解:(1)xx;(2)xx。

        (三)小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

        1、五個(gè)概念(子集、集合相等、真子集、補(bǔ)集、全集,其中子集、補(bǔ)集為重點(diǎn))

        2、五條性質(zhì)

        (1)空集是任何集合的子集。ΦxxA

        (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

        (3)任何一個(gè)集合是它本身的子集。

        (4)如果xx,xx,則xx、

        (5)xxS(xxSA)=A

        3、兩組易混符號(hào):(1)“xx”與“xx”:(2){0}與

        (四)課后作業(yè):見(jiàn)教材P10習(xí)題1、2

      高中數(shù)學(xué)教案9

        教學(xué)目標(biāo)

        知識(shí)與技能目標(biāo):

        本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個(gè)層次:

        (1)通過(guò)復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個(gè)步驟”以及“平均變化率與割線(xiàn)斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問(wèn)題的途徑。

        (2)從圓中割線(xiàn)和切線(xiàn)的變化聯(lián)系,推廣到一般曲線(xiàn)中用割線(xiàn)逼近的方法直觀定義切線(xiàn)。

        (3)依據(jù)割線(xiàn)與切線(xiàn)的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認(rèn)識(shí)到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線(xiàn)的斜率。即:

        導(dǎo)數(shù)的幾何意義教案=曲線(xiàn)在導(dǎo)數(shù)的幾何意義教案處切線(xiàn)的斜率k

        在此基礎(chǔ)上,通過(guò)例題和練習(xí)使學(xué)生學(xué)會(huì)利用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問(wèn)題,加深對(duì)導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)過(guò)程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。

        過(guò)程與方法目標(biāo):

        (1)學(xué)生通過(guò)觀察感知、動(dòng)手探究,培養(yǎng)學(xué)生的動(dòng)手和感知發(fā)現(xiàn)的能力。

        (2)學(xué)生通過(guò)對(duì)圓的切線(xiàn)和割線(xiàn)聯(lián)系的認(rèn)識(shí),再類(lèi)比探索一般曲線(xiàn)的情況,完善對(duì)切線(xiàn)的認(rèn)知,感受逼近的思想,體會(huì)相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。

        (3)結(jié)合分層的探究問(wèn)題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨(dú)立解決問(wèn)題和發(fā)現(xiàn)新知、應(yīng)用新知。

        情感、態(tài)度、價(jià)值觀:

        (1)通過(guò)在探究過(guò)程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過(guò)有限來(lái)認(rèn)識(shí)無(wú)限,體驗(yàn)數(shù)學(xué)中轉(zhuǎn)化思想的意義和價(jià)值;

        (2)在教學(xué)中向他們提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),如:探究活動(dòng),讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進(jìn)他們真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高綜合能力,學(xué)會(huì)學(xué)習(xí),進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。

        教學(xué)重點(diǎn)與難點(diǎn)

        重點(diǎn):理解和掌握切線(xiàn)的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實(shí)際問(wèn)題,體會(huì)數(shù)形結(jié)合、以直代曲的思想方法。

        難點(diǎn):發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。

        教學(xué)過(guò)程

        一、復(fù)習(xí)提問(wèn)

        1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個(gè)步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).

        定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)在該點(diǎn)處的瞬時(shí)變化率。

        求導(dǎo)數(shù)的步驟:

        第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;

        第二步:求瞬時(shí)變化率導(dǎo)數(shù)的幾何意義教案.

        (即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點(diǎn)導(dǎo)數(shù))

        2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案在圖形中表示什么?

        生:平均變化率表示的是割線(xiàn)PQ的斜率.導(dǎo)數(shù)的幾何意義教案

        師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,

        3.瞬時(shí)變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?

        如圖2-1,設(shè)曲線(xiàn)C是函數(shù)y=f(x)的圖象,點(diǎn)P(x0,y0)是曲線(xiàn)C上一點(diǎn).點(diǎn)Q(x0+Δx,y0+Δy)是曲線(xiàn)C上與點(diǎn)P鄰近的任一點(diǎn),作割線(xiàn)PQ,當(dāng)點(diǎn)Q沿著曲線(xiàn)C無(wú)限地趨近于點(diǎn)P,割線(xiàn)PQ便無(wú)限地趨近于某一極限位置PT,我們就把極限位置上的直線(xiàn)PT,叫做曲線(xiàn)C在點(diǎn)P處的切線(xiàn).

        導(dǎo)數(shù)的幾何意義教案

        追問(wèn):怎樣確定曲線(xiàn)C在點(diǎn)P的切線(xiàn)呢?因?yàn)镻是給定的,根據(jù)平面解析幾何中直線(xiàn)的點(diǎn)斜式方程的知識(shí),只要求出切線(xiàn)的斜率就夠了.設(shè)割線(xiàn)PQ的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線(xiàn)PT的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線(xiàn)PQ的斜率為導(dǎo)數(shù)的幾何意義教案。既然割線(xiàn)PQ的極限位置上的直線(xiàn)PT是切線(xiàn),所以割線(xiàn)PQ斜率的極限就是切線(xiàn)PT的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。

        由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案。

        導(dǎo)數(shù)的.幾何意義教案

        由上式可知:曲線(xiàn)f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)的斜率就是y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).今天我們就來(lái)探究導(dǎo)數(shù)的幾何意義。

        C類(lèi)學(xué)生回答第1題,A,B類(lèi)學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點(diǎn)講評(píng)第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.

        二、新課

        1、導(dǎo)數(shù)的幾何意義:

        函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0)的幾何意義,就是曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處切線(xiàn)的斜率.

        即:導(dǎo)數(shù)的幾何意義教案

        口答練習(xí):

        (1)如果函數(shù)y=f(x)在已知點(diǎn)x0處的導(dǎo)數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對(duì)應(yīng)點(diǎn)的切線(xiàn)的傾斜角,并說(shuō)明切線(xiàn)各有什么特征。

        (C層學(xué)生做)

        (2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線(xiàn),通過(guò)觀察確定函數(shù)在各點(diǎn)的導(dǎo)數(shù).(A、B層學(xué)生做)

        導(dǎo)數(shù)的幾何意義教案

        2、如何用導(dǎo)數(shù)研究函數(shù)的增減?

        小結(jié):附近:瞬時(shí),增減:變化率,即研究函數(shù)在該點(diǎn)處的瞬時(shí)變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負(fù)即對(duì)應(yīng)函數(shù)的增減。作出該點(diǎn)處的切線(xiàn),可由切線(xiàn)的升降趨勢(shì),得切線(xiàn)斜率的正負(fù)即導(dǎo)數(shù)的正負(fù),就可以判斷函數(shù)的增減性,體會(huì)導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

        同時(shí),結(jié)合以直代曲的思想,在某點(diǎn)附近的切線(xiàn)的變化情況與曲線(xiàn)的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

        例1函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求該點(diǎn)處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。

        導(dǎo)數(shù)的幾何意義教案

        函數(shù)在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時(shí)任意點(diǎn)處的切線(xiàn)就是直線(xiàn)本身,斜率就是變化率)

        3、利用導(dǎo)數(shù)求曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程.

        例2求曲線(xiàn)y=x2在點(diǎn)M(2,4)處的切線(xiàn)方程.

        解:導(dǎo)數(shù)的幾何意義教案

        ∴y'|x=2=2×2=4.

        ∴點(diǎn)M(2,4)處的切線(xiàn)方程為y-4=4(x-2),即4x-y-4=0.

        由上例可歸納出求切線(xiàn)方程的兩個(gè)步驟:

        (1)先求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).

        (2)根據(jù)直線(xiàn)方程的點(diǎn)斜式,得切線(xiàn)方程為y-y0=f'(x0)(x-x0).

        提問(wèn):若在點(diǎn)(x0,f(x0))處切線(xiàn)PT的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線(xiàn)方程。(因?yàn)檫@時(shí)切線(xiàn)平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線(xiàn)方程。根據(jù)切線(xiàn)定義可直接得切線(xiàn)方程導(dǎo)數(shù)的幾何意義教案)

        (先由C類(lèi)學(xué)生來(lái)回答,再由A,B補(bǔ)充.)

        例3已知曲線(xiàn)導(dǎo)數(shù)的幾何意義教案上一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求:(1)過(guò)P點(diǎn)的切線(xiàn)的斜率;

        (2)過(guò)P點(diǎn)的切線(xiàn)的方程。

        解:(1)導(dǎo)數(shù)的幾何意義教案,

        導(dǎo)數(shù)的幾何意義教案

        y'|x=2=22=4. ∴在點(diǎn)P處的切線(xiàn)的斜率等于4.

        (2)在點(diǎn)P處的切線(xiàn)方程為導(dǎo)數(shù)的幾何意義教案即12x-3y-16=0.

        練習(xí):求拋物線(xiàn)y=x2+2在點(diǎn)M(2,6)處的切線(xiàn)方程.

        (答案:y'=2x,y'|x=2=4切線(xiàn)方程為4x-y-2=0).

        B類(lèi)學(xué)生做題,A類(lèi)學(xué)生糾錯(cuò)。

        三、小結(jié)

        1.導(dǎo)數(shù)的幾何意義.(C組學(xué)生回答)

        2.利用導(dǎo)數(shù)求曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程的步驟.

        (B組學(xué)生回答)

        四、布置作業(yè)

        1.求拋物線(xiàn)導(dǎo)數(shù)的幾何意義教案在點(diǎn)(1,1)處的切線(xiàn)方程。

        2.求拋物線(xiàn)y=4x-x2在點(diǎn)A(4,0)和點(diǎn)B(2,4)處的切線(xiàn)的斜率,切線(xiàn)的方程.

        3.求曲線(xiàn)y=2x-x3在點(diǎn)(-1,-1)處的切線(xiàn)的傾斜角

        4.已知拋物線(xiàn)y=x2-4及直線(xiàn)y=x+2,求:(1)直線(xiàn)與拋物線(xiàn)交點(diǎn)的坐標(biāo); (2)拋物線(xiàn)在交點(diǎn)處的切線(xiàn)方程;

        (C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)

        教學(xué)反思:

        本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問(wèn)題、導(dǎo)數(shù)的概念”等知識(shí)的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計(jì)極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過(guò)動(dòng)手作圖,自我感受整個(gè)逼近的過(guò)程,讓學(xué)生更加深刻地體會(huì)導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。

        本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù)的幾何意義解釋實(shí)際問(wèn)題”兩個(gè)教學(xué)重心展開(kāi)。先回憶導(dǎo)數(shù)的實(shí)際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類(lèi)比“平均變化率——瞬時(shí)變化率”的研究思路,運(yùn)用逼近的思想定義了曲線(xiàn)上某點(diǎn)的切線(xiàn),再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義——“導(dǎo)數(shù)是曲線(xiàn)上某點(diǎn)處切線(xiàn)的斜率”。

        完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點(diǎn)明,利用導(dǎo)數(shù)的幾何意義,在研究實(shí)際問(wèn)題時(shí),某點(diǎn)附近的曲線(xiàn)可以用過(guò)此點(diǎn)的切線(xiàn)近似代替,即“以直代曲”,從而達(dá)到“以簡(jiǎn)單的對(duì)象刻畫(huà)復(fù)雜對(duì)象”的目的,并通過(guò)兩個(gè)例題的研究,讓學(xué)生從不同的角度完整地體驗(yàn)導(dǎo)數(shù)與切線(xiàn)斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。本節(jié)課注重以學(xué)生為主體,每一個(gè)知識(shí)、每一個(gè)發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時(shí)間和空間,讓學(xué)生在動(dòng)手操作、動(dòng)筆演算等活動(dòng)后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來(lái),效果較好。

      高中數(shù)學(xué)教案10

        [核心必知]

        1、預(yù)習(xí)教材,問(wèn)題導(dǎo)入

        根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問(wèn)題、

       。1)常見(jiàn)的程序框有哪些?

        提示:終端框(起止框),輸入、輸出框,處理框,判斷框、

       。2)算法的基本邏輯結(jié)構(gòu)有哪些?

        提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)、

        2、歸納總結(jié),核心必記

        (1)程序框圖

        程序框圖又稱(chēng)流程圖,是一種用程序框、流程線(xiàn)及文字說(shuō)明來(lái)表示算法的圖形、

        在程序框圖中,一個(gè)或幾個(gè)程序框的組合表示算法中的一個(gè)步驟;帶有方向箭頭的流程線(xiàn)將程序框連接起來(lái),表示算法步驟的執(zhí)行順序、

       。2)常見(jiàn)的程序框、流程線(xiàn)及各自表示的功能

        圖形符號(hào)名稱(chēng)功能

        終端框(起止框)表示一個(gè)算法的起始和結(jié)束

        輸入、輸出框表示一個(gè)算法輸入和輸出的信息

        處理框(執(zhí)行框)賦值、計(jì)算

        判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”

        流程線(xiàn)連接程序框

        ○連接點(diǎn)連接程序框圖的兩部分

       。3)算法的基本邏輯結(jié)構(gòu)

       、偎惴ǖ娜N基本邏輯結(jié)構(gòu)

        算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬(wàn)別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的

       、陧樞蚪Y(jié)構(gòu)

        順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的這是任何一個(gè)算法都離不開(kāi)的基本結(jié)構(gòu),用程序框圖表示為:

        [問(wèn)題思考]

       。1)一個(gè)完整的程序框圖一定是以起止框開(kāi)始,同時(shí)又以起止框表示結(jié)束嗎?

        提示:由程序框圖的概念可知一個(gè)完整的程序框圖一定是以起止框開(kāi)始,同時(shí)又以起止框表示結(jié)束、

        (2)順序結(jié)構(gòu)是任何算法都離不開(kāi)的基本結(jié)構(gòu)嗎?

        提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開(kāi)的基本結(jié)構(gòu)、

        [課前反思]

        通過(guò)以上預(yù)習(xí),必須掌握的.幾個(gè)知識(shí)點(diǎn):

       。1)程序框圖的概念:

        (2)常見(jiàn)的程序框、流程線(xiàn)及各自表示的功能:

       。3)算法的三種基本邏輯結(jié)構(gòu):

       。4)順序結(jié)構(gòu)的概念及其程序框圖的表示:

        問(wèn)題背景:計(jì)算1×2+3×4+5×6+…+99×100。

        [思考1]能否設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)式子的值。

        提示:能。

        [思考2]能否采用更簡(jiǎn)潔的方式表述上述算法過(guò)程。

        提示:能,利用程序框圖。

        [思考3]畫(huà)程序框圖時(shí)應(yīng)遵循怎樣的規(guī)則?

        名師指津:

       。1)使用標(biāo)準(zhǔn)的框圖符號(hào)。

        (2)框圖一般按從上到下、從左到右的方向畫(huà)。

       。3)除判斷框外,其他程序框圖的符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn),判斷框是一個(gè)具有超過(guò)一個(gè)退出點(diǎn)的程序框。

       。4)在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚。

       。5)流程線(xiàn)不要忘記畫(huà)箭頭,因?yàn)樗欠从沉鞒虉?zhí)行先后次序的,如果不畫(huà)出箭頭就難以判斷各框的執(zhí)行順序。

      高中數(shù)學(xué)教案11

        一、教學(xué)目標(biāo)

        【知識(shí)與技能】

        掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

        【過(guò)程與方法】

        經(jīng)歷三角函數(shù)的.單調(diào)性的探索過(guò)程,提升邏輯推理能力。

        【情感態(tài)度價(jià)值觀】

        在猜想計(jì)算的過(guò)程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

        二、教學(xué)重難點(diǎn)

        【教學(xué)重點(diǎn)】

        三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

        【教學(xué)難點(diǎn)】

        探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過(guò)程。

        三、教學(xué)過(guò)程

       。ㄒ唬┮胄抡n

        提出問(wèn)題:如何研究三角函數(shù)的單調(diào)性

        (四)小結(jié)作業(yè)

        提問(wèn):今天學(xué)習(xí)了什么?

        引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過(guò)程。

        課后作業(yè):

        思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

      高中數(shù)學(xué)教案12

        教材分析:

        三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教B版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。

        教案背景:

        通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

        教學(xué)方法:

        以學(xué)生為主題,以發(fā)現(xiàn)為主線(xiàn),盡力滲透類(lèi)比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。

        教學(xué)目標(biāo):

        借助單位圓探究誘導(dǎo)公式。

        能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。

        教學(xué)重點(diǎn):

        誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。

        教學(xué)難點(diǎn):

        誘導(dǎo)公式的應(yīng)用。

        教學(xué)手段:

        多媒體。

        教學(xué)情景設(shè)計(jì):

        一.復(fù)習(xí)回顧:

        1. 誘導(dǎo)公式(一)(二)。

        2. 角 (終邊在一條直線(xiàn)上)

        3. 思考:下列一組角有什么特征?( )能否用式子來(lái)表示?

        二.新課:

        已知 由

        可知

        而 (課件演示,學(xué)生發(fā)現(xiàn))

        所以

        于是可得: (三)

        設(shè)計(jì)意圖:結(jié)合幾何畫(huà)板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。

        由公式(一)(三)可以看出,角 角 相等。即:

        .

        公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡(jiǎn)三角函數(shù)式。

        設(shè)計(jì)意圖:結(jié)合學(xué)過(guò)的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。

        1. 練習(xí)

        (1)

        設(shè)計(jì)意圖:利用公式解決問(wèn)題,發(fā)現(xiàn)新問(wèn)題,小組研究討論,得到新公式。

        (學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)

        三.例題

        例3:求下列各三角函數(shù)值:

        (1)

        (2)

        (3)

        (4)

        例4:化簡(jiǎn)

        設(shè)計(jì)意圖:利用公式解決問(wèn)題。

        練習(xí):

        (1)

        (2) (學(xué)生板演,師生點(diǎn)評(píng))

        設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問(wèn)題。

        四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問(wèn)題、解決問(wèn)題的能力,熟練應(yīng)用解決問(wèn)題。

        五.課后作業(yè):課后練習(xí)A、B組

        六.課后反思與交流

        很榮幸大家來(lái)聽(tīng)我的課,通過(guò)這課,我學(xué)習(xí)到如下的東西:

        1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位

        2.注意板書(shū)設(shè)計(jì),注重細(xì)節(jié)的東西,語(yǔ)速需要改正

        3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁(yè)制作,讓你的網(wǎng)頁(yè)更加的完善,學(xué)生更容易操作

        4.盡可能讓你的學(xué)生自主提出問(wèn)題,自主的思考,能夠化被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),充分享受學(xué)習(xí)數(shù)學(xué)的樂(lè)趣

        5.上課的生動(dòng)化,形象化需要加強(qiáng)

        聽(tīng)課者評(píng)價(jià):

        1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開(kāi)設(shè)校際課,勇氣可嘉!建議:感覺(jué)到老師有點(diǎn)緊張,其實(shí)可以放開(kāi)點(diǎn)的,相信效果會(huì)更好的'!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁(yè)上公開(kāi)的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來(lái)思考。

        2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語(yǔ)調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。

        3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來(lái),并形成自我的經(jīng)驗(yàn)。

        4.評(píng)議者:引導(dǎo)學(xué)生通過(guò)網(wǎng)絡(luò)進(jìn)行探究。

        建議:課件制作在線(xiàn)測(cè)評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測(cè)試;多提問(wèn)學(xué)生。

        ( 1)給學(xué)生思考的時(shí)間較長(zhǎng),語(yǔ)調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語(yǔ)言更好

        ( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考

        ( 3)網(wǎng)絡(luò)平臺(tái)的使用,使得學(xué)生的參與度明顯提高,存在問(wèn)題:1.公式對(duì)稱(chēng)性的誘導(dǎo),點(diǎn)與點(diǎn)的對(duì)稱(chēng)的誘導(dǎo),終邊的關(guān)系的誘導(dǎo),要進(jìn)一步的修正;2.公式的概括要注意引導(dǎo)學(xué)生怎么用,學(xué)習(xí)這個(gè)誘導(dǎo)公式的作用

        ( 4)給學(xué)生答案,這個(gè)網(wǎng)頁(yè)要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來(lái)

        ( 5)1.板書(shū)設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語(yǔ)速相對(duì)是比較快的3.練習(xí)量比較少

        ( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧

        ( 7)注意引入的過(guò)程要帶有目的,帶著問(wèn)題來(lái)教學(xué),學(xué)生帶著問(wèn)題來(lái)學(xué)習(xí)

        ( 8)教學(xué)模式相對(duì)簡(jiǎn)單重復(fù)

        ( 9)思路較為清晰,規(guī)范化的推理

      高中數(shù)學(xué)教案13

        猴子搬香蕉

        一個(gè)小猴子邊上有100根香蕉,它要走過(guò)50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請(qǐng)問(wèn)它最多能把多少根香蕉搬到家里?

        解答:

        100只香蕉分兩次,一次運(yùn)50只,走1米,再回去搬另外50只,這樣走了1米的時(shí)候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時(shí)候剩下46+48只;...到16米的時(shí)候剩下(50-2×16)+(50-16)=18+34只;17米的時(shí)候剩下16+33只,共49只;然后把剩下的這49只一次運(yùn)回去,要走剩下的33米,每米吃一個(gè),到家還有16個(gè)香蕉。

        河岸的距離

        兩艘輪船在同一時(shí)刻駛離河的兩岸,一艘從A駛往B,另一艘從B開(kāi)往A,其中一艘開(kāi)得比另一艘快些,因此它們?cè)诰嚯x較近的岸500公里處相遇。到達(dá)預(yù)定地點(diǎn)后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問(wèn)河有多寬?

        解答:

        當(dāng)兩艘渡輪在x點(diǎn)相遇時(shí),它們距A岸500公里,此時(shí)它們走過(guò)的距離總和等于河的寬度。當(dāng)它們雙方抵達(dá)對(duì)岸時(shí),走過(guò)的總長(zhǎng)度

        等于河寬的兩倍。在返航中,它們?cè)趜點(diǎn)相遇,這時(shí)兩船走過(guò)的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應(yīng)該等于它們第一次相遇時(shí)所走的距離的.三倍。在兩船第一次相遇時(shí),有一艘渡輪走了500公里,所以當(dāng)它到達(dá)z點(diǎn)時(shí),已經(jīng)走了三倍的距離,即1500公里,這個(gè)距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時(shí)間對(duì)答案毫無(wú)影響。

        變量交換

        不使用任何其他變量,交換a,b變量的值?

        分析與解答

        a = a+b

        b = a-b

        a= a-b

        步行時(shí)間

        某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個(gè)小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車(chē)回小鎮(zhèn)。小鎮(zhèn)車(chē)站離家還有一段距離,他的私人司機(jī)總是在同一時(shí)刻從家里開(kāi)出轎車(chē),去小鎮(zhèn)車(chē)站接總裁回家。由于火車(chē)與轎車(chē)都十分準(zhǔn)時(shí),因此,火車(chē)與轎車(chē)每次都是在同一時(shí)刻到站。

        有一次,司機(jī)比以往遲了半個(gè)小時(shí)出發(fā)。溫斯頓到站后,找不到

        他的車(chē)子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車(chē)正風(fēng)馳電掣而來(lái),立即招手示意停車(chē),跳上車(chē)子后也顧不上罵司機(jī),命其馬上掉頭往回開(kāi)。回到家中,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長(zhǎng)時(shí)間?

        解答:

        假如溫斯頓一直在車(chē)站等候,那么由于司機(jī)比以往晚了半小時(shí)出發(fā),因此,也將晚半小時(shí)到達(dá)車(chē)站。也就是說(shuō),溫斯頓將在車(chē)站空等半小時(shí),等他的轎車(chē)到達(dá)后坐車(chē)回家,從而他將比以往晚半小時(shí)到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來(lái)的8分鐘是如果總裁在火車(chē)站死等的話(huà),司機(jī)本來(lái)要花在從現(xiàn)在遇到溫斯頓總裁的地點(diǎn)到火車(chē)站再回到這個(gè)地點(diǎn)上的時(shí)間。這意味著,如果司機(jī)開(kāi)車(chē)從現(xiàn)在遇到總裁的地點(diǎn)趕到火車(chē)站,單程所花的時(shí)間將為4分鐘。因此,如果溫斯頓等在火車(chē)站,再過(guò)4分鐘,他的轎車(chē)也到了。也就是說(shuō),他如果等在火車(chē)站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒(méi)有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。

        因此,溫斯頓步行了26分鐘。

        付清欠款

        有四個(gè)人借錢(qián)的數(shù)目分別是這樣的:阿伊庫(kù)向貝爾借了10美元;

        貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫(kù)借了40美元。碰巧四個(gè)人都在場(chǎng),決定結(jié)個(gè)賬,請(qǐng)問(wèn)最少只需要?jiǎng)佑枚嗌倜澜鹁涂梢詫⑺星房钜淮胃肚澹?/p>

        解答:

        貝爾、查理、迪克各自拿出10美元給阿伊庫(kù)就可解決問(wèn)題了。這樣的話(huà)只動(dòng)用了30美元。最笨的辦法就是用100美元來(lái)一一付清。

        貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫(kù)則要收回借出的30美元。再?gòu)?fù)雜的問(wèn)題只要有條理地分析就會(huì)很簡(jiǎn)單。養(yǎng)成經(jīng)常性地歸納整理、摸索實(shí)質(zhì)的好習(xí)慣。

        一美元紙幣

        注:美國(guó)貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。

        一家小店剛開(kāi)始營(yíng)業(yè),店堂中只有三位男顧客和一位女店主。當(dāng)這三位男士同時(shí)站起來(lái)付帳的時(shí)候,出現(xiàn)了以下的情況:

       。1)這四個(gè)人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。

       。2)這四人中沒(méi)有一人能夠兌開(kāi)任何一枚硬幣。

        (3)一個(gè)叫盧的男士要付的賬單款額最大,一位叫莫的男士要

        付的帳單款額其次,一個(gè)叫內(nèi)德的男士要付的賬單款額最小。

        (4)每個(gè)男士無(wú)論怎樣用手中所持的硬幣付賬,女店主都無(wú)法找清零錢(qián)。

       。5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個(gè)人都可以付清自己的賬單而無(wú)需找零。

       。6)當(dāng)這三位男士進(jìn)行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒(méi)有一枚面值相同。

        (7)隨著事情的進(jìn)一步發(fā)展,又出現(xiàn)如下的情況:

        (8)在付清了賬單而且有兩位男士離開(kāi)以后,留下的男士又買(mǎi)了一些糖果。這位男士本來(lái)可以用他手中剩下的硬幣付款,可是女店主卻無(wú)法用她現(xiàn)在所持的硬幣找清零錢(qián)。于是,這位男士用1美元的紙幣付了糖果錢(qián),但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。

        現(xiàn)在,請(qǐng)你不要管那天女店主怎么會(huì)在找零上屢屢遇到麻煩,這三位男士中誰(shuí)用1美元的紙幣付了糖果錢(qián)?

        解答:

        對(duì)題意的以下兩點(diǎn)這樣理解:

       。2)中不能換開(kāi)任何一個(gè)硬幣,指的是如果任何一個(gè)人不能有2個(gè)5分,否則他能換1個(gè)10分硬幣。

       。6)中指如果A,B換過(guò),并且A,C換過(guò),這就是兩次交換。

      高中數(shù)學(xué)教案14

        一、教材分析

        1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見(jiàn)到的、很普通的一個(gè)空間圖形。“二面角”是人教版《數(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過(guò)兩條異面直線(xiàn)所成的角、直線(xiàn)和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究?jī)蓚(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過(guò)本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線(xiàn)和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

        2、教學(xué)目標(biāo):

        知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問(wèn)題。

        (2)進(jìn)一步培養(yǎng)學(xué)生把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的化歸思想。

        能力目標(biāo):(1)突出對(duì)類(lèi)比、直覺(jué)、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過(guò)對(duì)圖形的觀察、分析、比較和操作來(lái)強(qiáng)化學(xué)生的動(dòng)手操作能力。

        德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過(guò)揭示線(xiàn)線(xiàn)、線(xiàn)面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

        情感目標(biāo):在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。

        3、重點(diǎn)、難點(diǎn):

        重點(diǎn):“二面角”和“二面角的平面角”的概念

        難點(diǎn):“二面角的平面角”概念的形成過(guò)程

        二、教法分析

        1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問(wèn)題啟導(dǎo)、活動(dòng)探究和類(lèi)比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

       。病⒔虒W(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

        3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來(lái)輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

        三、學(xué)法指導(dǎo)

        1、樂(lè)學(xué):在整個(gè)學(xué)習(xí)過(guò)程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

        2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類(lèi)比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

        3、會(huì)學(xué):通過(guò)自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類(lèi)比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問(wèn)題,更能發(fā)現(xiàn)問(wèn)題。

        四、教學(xué)過(guò)程

        心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。

       。ㄒ唬⒍娼

        1、揭示概念產(chǎn)生背景。

        問(wèn)題情境1、在平面幾何中“角”是怎樣定義的?

        問(wèn)題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

        問(wèn)題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書(shū)課題)。

        通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過(guò)程。

        問(wèn)題情境4、那么,應(yīng)該如何定義二面角呢?

        創(chuàng)設(shè)這個(gè)問(wèn)題情境,為學(xué)生創(chuàng)新思維的展開(kāi)提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過(guò)程。教師應(yīng)注意多讓學(xué)生說(shuō),對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。

        問(wèn)題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過(guò)實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

       。ǘ、二面角的平面角

        1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說(shuō)明二面角不僅有大小,而且其大小是唯一確定的。平面

        與平面的位置關(guān)系,總的說(shuō)來(lái)只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來(lái)研究二面角的度量問(wèn)題。

        問(wèn)題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來(lái)處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

        2、展現(xiàn)概念形成過(guò)程

       。1)、類(lèi)比。教師啟發(fā),尋找類(lèi)比聯(lián)想的對(duì)象。

        問(wèn)題情境7、我們以前碰到過(guò)類(lèi)似的問(wèn)題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過(guò)的兩種空間角的定義,電腦演示以提高效率。

        問(wèn)題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。

        問(wèn)題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

        (2)、提出猜想:二面角的大小也可通過(guò)平面的角來(lái)定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

        問(wèn)題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺(jué)思維的結(jié)果。

       。3)、探索實(shí)驗(yàn)。通過(guò)實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

       。4)、繼續(xù)探索,得到定義。

        問(wèn)題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過(guò)直線(xiàn)上一點(diǎn)的垂線(xiàn)的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

        (5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說(shuō)明定義的合理性,教師作適當(dāng)?shù)?引導(dǎo),并加以理論證明。

        (三)、二面角及其平面角的畫(huà)法

        主要分為直立式和平臥式兩種,用電腦《幾何畫(huà)板》作圖。

        (四)、范例分析

        為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來(lái)源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來(lái)自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

        例:一張邊長(zhǎng)為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。

        分析:涉及二面角的計(jì)算問(wèn)題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

        變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

        題后反思:(1)解題過(guò)程中必須證明∠BDc是二面角B—AD—c的平面角。

       。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

        (五)、練習(xí)、小結(jié)與作業(yè)

        練習(xí):習(xí)題9.7的第3題

        小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類(lèi)比和深入研究這兩種知識(shí)創(chuàng)新的方法。

        作業(yè):習(xí)題9.7的第4題

        思考題:見(jiàn)例題

        五、板書(shū)設(shè)計(jì)(見(jiàn)課件)

        以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

      高中數(shù)學(xué)教案15

        教學(xué)目標(biāo)

       。1)了解線(xiàn)性規(guī)劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標(biāo)函數(shù)、線(xiàn)性規(guī)化問(wèn)題、可行解、可行域以及最優(yōu)解等基本概念;

       。2)了解線(xiàn)性規(guī)劃問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問(wèn)題;

       。3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建!焙徒鉀Q實(shí)際問(wèn)題的能力;

       。4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的'興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.

        重點(diǎn)難點(diǎn)

        理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn)。

        如何擾實(shí)際問(wèn)題轉(zhuǎn)化為線(xiàn)性規(guī)劃問(wèn)題,并給出解答是教學(xué)難點(diǎn)。

        教學(xué)步驟

        (一)引入新課

        我們已研究過(guò)以二元一次不等式組為約束條件的二元線(xiàn)性目標(biāo)函數(shù)的線(xiàn)性規(guī)劃問(wèn)題。那么是否有多個(gè)兩個(gè)變量的線(xiàn)性規(guī)劃問(wèn)題呢?又什么樣的問(wèn)題不用線(xiàn)性規(guī)劃知識(shí)來(lái)解決呢?

      【高中數(shù)學(xué)教案】相關(guān)文章:

      高中數(shù)學(xué)教案04-11

      高中數(shù)學(xué)教案模板02-02

      高中數(shù)學(xué)教案(精選20篇)01-29

      高中數(shù)學(xué)教案精選15篇01-29

      高中數(shù)學(xué)教案(精選15篇)02-04

      高中數(shù)學(xué)教案15篇07-20

      高中數(shù)學(xué)教案(15篇)07-21

      高中數(shù)學(xué)教案(通用15篇)08-22

      高中數(shù)學(xué)教案(集合15篇)08-18

      高中數(shù)學(xué)教案通用15篇01-11