亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 《乘法分配律》教學反思

      時間:2023-01-15 17:44:54 教育反思 投訴 投稿

      《乘法分配律》教學反思

        身為一位優(yōu)秀的老師,課堂教學是重要的任務之一,教學反思能很好的記錄下我們的課堂經驗,那么大家知道正規(guī)的教學反思怎么寫嗎?下面是小編收集整理的《乘法分配律》教學反思,僅供參考,大家一起來看看吧。

      《乘法分配律》教學反思

      《乘法分配律》教學反思1

        在設計本節(jié)課的過程中,我一直抱著“以學生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學習任務、參與共同的學習活動過程中實現(xiàn)不同的人的數(shù)學水平得到不同發(fā)展的教學方式。結合教學設計,對本節(jié)課進行以下反思:

        一、在 教學這節(jié)課時 ,我 以計算引入,復習舊知, 然后拋出一個較為復雜的算式“ 46×276+276×54”如何計算更簡便,一下子學生們鴉雀無聲了,他們陷入了沉思中,有的抓腦袋,有的搖頭,很是難為,這是,我很“自豪”的告訴他們,老師能在一秒鐘內說出得數(shù),你們相信嗎?想知道老師的訣竅嗎? 一下子,把學生的求知欲和好奇心調動了起來。

        二、讓學生根據(jù)自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。 出示情景圖后,請學生自己思考,交流 。通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結果卻是一樣的。這都是在學生已有的知識經驗的基礎上得到的結論,是來自于學生已有的數(shù)學知識水平的。通過用自己喜歡的方式來表達乘法分配律從而加以內化。學生學得積極、學得主動、學得快樂,自己動手編題、自己動腦探索,從數(shù)量關系變化的多次類比中悟出規(guī)律。

        三、總體上我的教學思路是由具體——抽象——具體。在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,我都予以肯定和表揚,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。

        四、在學習中大膽放手,把學生放在主動探索知識規(guī)律的主體位置上,讓學生能自由地利用自己的知識經驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應用規(guī)律。教師“扶”得少,學生創(chuàng)造得多,學生學會的不僅僅是一條規(guī)律,更重要的是,學生學會了自主自動,學會了進行合作,學會了獨立思考。這對十歲左右的孩子來說,其激勵作用無疑是無比巨大的.,而“愛思、多思、會思”的學習習慣,會讓孩子一生受益。

        在本節(jié)課的教學設計上,我體現(xiàn)新課標的一些理念,注重從學生的實際出發(fā),把數(shù)學知識同生活實際緊密聯(lián)系起來,讓學生在體驗中學到知識。通過創(chuàng)設情境,設置懸念,激發(fā)學生的學習欲望和學習興趣。在練習題的設計上,我力求有針對性,有坡度,同時也注意知識的延伸。

        在教學過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內容時,學生難以完整地總結出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等。教學乘法分配律之后,發(fā)現(xiàn)學生的正確率很低,特別是對乘法結合律與乘法分配律極容易混淆。有余數(shù)的除法教學反思法國號教學反思吃水不忘挖井人教學反思

      《乘法分配律》教學反思2

        乘法分配律教學是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上進行的。它是學生較難理解與敘述的定律。因此我在教學中讓學生在不斷的感悟、體驗、練習中理解乘法分配律,從而達到熟練掌握的效果。

        一、從學生已有生活經驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學生獨立自主、主動探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學的`應用意識。

        二、在本課教學過程的設計上,我盡量想體現(xiàn)新課標的一些理念,注重從實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在體驗中學到知識。舉例:設計學校買書的情景。讓學生幫助出主意。出示:“一套故事書45元,一套科技書35元,各買3套書。一共需要多少元錢?”讓學生嘗試通過不同的方法得出:(45 +35 )×3 = 80×3 = 240(元)、45×3 + 35×3 = 135+105= 240(元)。此時,讓學生觀察通過計算方法得到了相同的結果,這兩個算式可用“=”連接。使之讓學生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變!庇米帜感问奖硎荆海╝ + b)× c = a × c + b × c

        本節(jié)課氣氛活躍,學生積極性高?赏ㄟ^練習發(fā)現(xiàn)孩子們掌握得并不如意,在下節(jié)課我將繼續(xù)加強練習。

      《乘法分配律》教學反思3

        《乘法分配律》是四年級數(shù)學下冊第三單元中的一節(jié)教學內容,一直以來的教學中,我認為這節(jié)課的教學都是一個教學難點,學生很難學好。

        我認為其中的不易可以從三個方面來說:其一,例題僅僅是分配律的一點知識,在課下的練習題中還存在不少乘法分配律類型的題(不過,這好像也是新課改后教材的表現(xiàn))。如果讓學生僅僅學會例題,可以說,你也只是學到了乘法分配律的皮毛;其二,乘法分配律只是一種簡單的計算方法的應用,所有用乘法分配律計算的`試題,用一般的方法完全都可以計算出來,也就是說,如果不用乘法分配律,學生完全可以計算出結果來,只不過不能符合簡便計算的要求罷了,問題是學生已學過一般的方法,學生在計算時想的最多的還是一般的計算方法;其三,本節(jié)課的教學靈活性比較大,并沒有死板板的模式可以來死記硬背,就是學生記住了定律,在運用時,運用錯了,也是很大的麻煩,從題目的分析到應用定律都需要學生的認真分析及靈活運用。

        針對以上自己分析可能出現(xiàn)的問題,,確定從以下兩個方面時行教學:

        第一,以書本為依托,學好基礎知識。

        有一句話叫做“萬變不離其宗”。雖然課下還有多種類型題,但它們都與書上的例題有著親密的聯(lián)系,所以教學還是要以書本為依托。在教學中,我引導生通過觀察兩個不同的算式,得出乘法分配律的用字母表示數(shù):a×b+a×c=a×(b+c),在引導學生經過練習之后,我還強調學生,要做到:a×(b+c)=a×b+a×c。用我自己的話說,就是:能走出去,還要走回來。再次經過練習,在學生掌握差不多時,簡單變換一下樣式:(a+b)×c=a×c+b×c,走回來:a×c+b×c=(a+b)×c。如此以來,學生算是對乘法分配律有了個初步的認識,知道是怎么回事,具體的運用還差很遠,因為還有很多的類型學生并不知道。于是我就在第二節(jié)課進行了第二個方面的教學。

        第二,以練習為載體,系統(tǒng)鞏固知識。

        針對乘法分配律還有多種類型,例題中也沒講到的情況,我上網查資料,加上并時的一些認識,把乘法分配律分為五類,并對每類進行簡單的分析提示,附以相應的練習題印發(fā)給學生,讓學生進行練習。

        類型一:(a+b)×c a×(b-c)

        例:A(40+8)×25 B 15×(40-8)

        類型二:a×b+a×c a×b-a×c

        例:A 36×34+36×66 B 325×113-325×13

        類型三:100+1或80+1

        例:A 78×102 B 125×81

        類型四:100-1或40-1

        例:A 45×98 B 25×39

        類型五:+1或-1

        例:A 83+83×99 B 91×31-91

      《乘法分配律》教學反思4

        《乘法分配律》是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……

        1、關注學生已有的知識經驗。以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境,喚醒了學生已有的知識經驗,使學生初步感知乘法分配律。

        2、展示知識的發(fā)生過程,引導學生積極主動探究。讓學生根據(jù)提供的問題,用不同的方法解決,引導學生觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律。不僅讓學生獲得了數(shù)學基礎知識和基本技能,而且培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。

        3、出示乘法分配律的幾種不同的形式讓學生進行練習。

        通過這一系列的教學措施,一節(jié)課下來,總體感覺良好——覺得同學們掌握得還不錯。于是,我布置了讓學生們完成練習冊中《乘法分配律》這一課的.習題。

        當我批改練習時我傻了眼,學生的作業(yè)大多是中,少部分得良和差(我的作業(yè)批改評定標準),為什么會是這樣的結果,我進行反思,發(fā)現(xiàn)是講時,例題出示的不多,當時學生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學生就很容易受到干擾,結果是張冠李戴,錯得讓我涕笑皆非。而為了讓學生把這個知識點掌握牢固,我整整又用了兩節(jié)課。

        通過這個知識點的教學,我發(fā)現(xiàn)數(shù)學不多練是不行的。在學生理解之后,必須對其進行及時、有效的練習才可以使知識掌握的更加牢固。

      《乘法分配律》教學反思5

        我對教材內容、學情進行了認真的分析之后,確定了教學目標:通過小組合作探索乘法分配律的活動,進一步體驗探索規(guī)律的過程,并能用字母表示;經歷共同探索的過程,培養(yǎng)解決實際問題和數(shù)學交流的能力;會用乘法分配律進行一些簡便計算。通過學生自主研究、小組討論、全班交流以及講學練相結合,設計相應的練習題,逐步理解抽象的乘法分配律。

        通過教研組全體老師的努力,我們設計了比較合理的前置性小研究。

        在本節(jié)課的教學過程中,學生通過對“前置性小研究”的探索研究,能會用兩種方法去解決同一問題,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點,能夠觀察出兩道算式的結果是相同的;能夠按照算式的特點進行舉例;能夠自己說出規(guī)律,總結規(guī)律;能夠用求結果和乘法的意義去驗證這條規(guī)律的正確性、普遍性;能夠運用乘法分配律解決實際的問題,在做題的同時感受乘法分配律給計算帶來的方便。

        當然,本節(jié)課的教育教學過程,也是有不足的地方。我認為:

        1、教師在施教的過程中,經常性的打斷學生的發(fā)言。其實這是很不好的習慣。課下陳靖嫣對我說:“老師,你一打斷我,我就不知道怎么說了!蔽易约阂惨庾R到了這個問題。我覺得在“生本課堂”中教師,應該有這樣一種意識,那就是“等”的意識。等學生表達完他的所有想法之后,他們在遇到“瓶頸”的時候,老師可以經過有智慧的引導,幫助他們度過“難過”?墒俏覀兒芏鄷r候,經常犯的錯誤是,學生只要一有點小問題,老師馬上就出馬,這樣是極不好的做法。像本次課中,我有好幾次打斷了陳靖嫣同學的匯報,也打斷了王孟陽同學的匯報,還有好幾次打斷了同學們的交流活動。

        對于這種打斷可能在心里帶著很僥幸的心理,認為我必須在規(guī)定的時間完成某些教學任務,不能讓本節(jié)課“節(jié)外生枝”?墒牵@種心理違背了“生本課堂”的基本教學理念。

        2、教師在引導的過程中,不能照顧到學生的想法。像:徐昊同學和李厚杰同學在課堂上,表達了自己的想法?墒俏以谑┙痰倪^程中,沒有給予足夠的重視?赡軐τ诒竟(jié)課的教學,他們的想法,是在浪費時間?墒,我的這種做法,卻不能照顧到他們的后續(xù)發(fā)展。我覺得在處理這個事件的時候,我應該既不能讓本節(jié)課“跑偏”,也不能澆滅他們的“興趣之火”。這是需要有一定的教育智慧的。

        3、我覺得學生們的交流是不夠熱烈的。根本的原因是:學生們的研究不夠到位,不會提出自己的疑問,不能對自己的疑問進行探索研究。我覺得這都是老師在平時教學中,沒有給予足夠的指導的原因。

        還有很多的`問題,也許是我沒有意識到的。

        結合本節(jié)課,關于生本課堂我有了很多的想法。

        我認為真正的“生本課堂”是這樣的:

        教師在教學設計、教學過程等各個環(huán)節(jié),能體現(xiàn)學生的主體地位,從細節(jié)去體現(xiàn)。也是一種和諧的教育氛圍。教師和學生可以圍繞一個問題據(jù)理力爭,也可以在一節(jié)課中,實現(xiàn)多個知識點的“串聯(lián)”,也可能好幾節(jié)課我們突破不了一個知識點的講解。教師千萬要改變原先“計件工作”的模式,我們還原教育本來的色彩。它應該是自然的,富有詩情畫意的。我們身在其中,師生應該一起去營造一種氛圍,體會教育給我們帶來的幸和充實感。

        我立志讓我的課堂,成為我們幸福的源泉。

      《乘法分配律》教學反思6

        今年我“高升”了!從畢業(yè)開始,一直在一二年級的數(shù)學徘徊,今年“高升”到了四年級!得到消息后,先是興奮,再是忐忑。興奮的是終于能教大孩子了。忐忑的是能教了這些大孩子嗎?于是每天像是剛工作時一樣,每天手寫備課、拎著凳子去聽師傅的每一節(jié)課,不敢有絲毫怠慢。更忐忑的是接到通知,于老師要來聽課,其中有我!于是馬上請教我的師傅車老師,車老師認為《乘法分配律》是一節(jié)數(shù)學味很濃的課,而且是一節(jié)特別值得研究的課,于是決定講這節(jié)課。經過初步備課,我發(fā)現(xiàn)乘法分配律的運用屬于運算律中最有難度的部分,而且類型頗多,每一種都能讓學生琢磨半天,這讓我感覺這節(jié)課確實很有意思,也很有挑戰(zhàn)。

        因為從來沒有執(zhí)教過高年級,我決定先“拜訪”名師。于是我上網搜視頻,設計。當我看到葛麗霞老師的視頻,我被驚艷了!課堂中的每個環(huán)節(jié)都讓我感覺眼前一亮,幾個精彩瞬間如“乘法分配律的探索過程、用字母表示法還有課的小結……”仍記憶猶新,于是我決定就模仿葛麗霞老師的這節(jié)課。視頻看了三遍,教案看了無數(shù)遍。于是就“拿來”了這節(jié)課。

        可是經過于老師的指導,我發(fā)現(xiàn),我模仿的是教案的話,每一句話后面深意,每一句話的目的,我真的明白了嗎?備課,備了教案,備了老師,卻把最重要的要素——學生,忘記了。沒有找到學生的認知起點,沒有探索到學生的易錯點,難點。后來,與我的師傅車老師一起研究,對教案進行了重建,重建教案主要有以下幾個改進:

        1、形意結合。

        初次教學乘法分配律時,由于對教材的挖掘比較膚淺,在教學中,只是重視了對“兩個數(shù)的和與一個數(shù)相乘,要用括號里的每一個加數(shù)分別與這個數(shù)相乘,再把積相加”這句話的理解,學生對乘法分配律的印象完全停留在外形上,根本不知道為什么要用括號里的每個加數(shù)分別與括號外的數(shù)相乘,結果他們在應用時,只會按照總結出的`規(guī)律生搬硬套,全班竟有一半的人出現(xiàn)了問題;當課堂進行到乘法分配律的逆運用時,很多學生更是不知道該從何入手,課堂效果特差。于是,重建教案中,在引導學生發(fā)現(xiàn)規(guī)律時,不僅注意了等式兩邊的“外形”結構特點,即“兩個數(shù)的和與一個數(shù)相乘,要用括號里的每一個加數(shù)分別與這個數(shù)相乘,再把積相加”,而且重視了對規(guī)律的本質--乘法意義的理解。借此機會我再次打開教學參考,進行了細細地研讀。“對12×105簡算時,要將105想成100與5的和。先求100個12是多少,再求5個12是多少,合起來就是105個12是多少!笔茄剑谝龑W生發(fā)現(xiàn)規(guī)律時,我只注意了等式兩邊的“外形”結構特點,卻缺乏對規(guī)律的本質--乘法意義的理解。

        2、講解到位,注重知識點的前后聯(lián)系

        初建教案時,最后環(huán)節(jié)設計了展示二年級兩位數(shù)乘一位數(shù),以及三年級兩位數(shù)乘兩位數(shù)的電子課本,其目的是將前后的知識點加以聯(lián)系。我的課堂設計也延續(xù)了這一亮點,可是我只是自顧自的講解了一番,孩子根本不知所云!

        起初我的感覺是這一環(huán)節(jié)主要是考慮優(yōu)等生的提升,所以在講解時也只是匆匆了事!但是,課后我覺得應該讓孩子明白回顧這一環(huán)節(jié)的內容,在出示乘法情境圖的時候可以采用課件展示的方式,出示23×(10+2)=23×10+23×2這一算式。為了讓學生更好地理解以前運用過乘法分配律,還可出示長方形的周長公式(a+b)×2=a×2+b×2,唯有此,才能夠將前后知識點聯(lián)系起來,水到渠成。

        新航程的號角已經吹響,我想我應該以此次講課為契機,適應數(shù)學教學的變化,向名師課堂學習,從“拿來”到“思考”,關注學生,讓數(shù)學回歸本質,盡自己最大的努力讓每一個孩子學到有價值的數(shù)學!

      《乘法分配律》教學反思7

        乘法分配律是小學階段學生比較難理解與敘述的運算定律,但的確又非常重要、運用廣泛。在本節(jié)教學過程的設計上我采用了讓孩子通過“聯(lián)系實際、感知建模;分類整理,生成模型;發(fā)現(xiàn)規(guī)律,舉例驗證;表示規(guī)律,建構模型;概括規(guī)律,完善模型;應用規(guī)律,感受模型”的探索過程,完成本節(jié)的教學任務。

        在教學過程中,以突破乘法分配律的教學重點和難點為切入點,對本節(jié)課知識的學習起到了舉足輕重的作用。根據(jù)自己的教學教訓,在平常的教學中,總是發(fā)現(xiàn)學生在學習完乘法分配律之后容易出現(xiàn)(a+b)×c=a×c+b的現(xiàn)象仔細研究其原因,其實是學生學的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內在的數(shù)學意義。因此,我就打破通過觀察發(fā)現(xiàn)猜想驗證概括的傳統(tǒng)教學思路,除了在外在形式上認識規(guī)律(教材意圖),又從乘法的`意義入手,使學生進一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結論。讓學生對乘法分配律的理解不再只是停留在外在的“形”,而是又進入“質”的深化。這種教學建立在學生認知規(guī)律的基礎之上,實現(xiàn)了有效的建立模型突破了本節(jié)的第一個難點。從課后作業(yè)可以看出,這種教學效果明顯好于以前。

        在突破本節(jié)第二個難點:乘法分配律容易跟乘法結合律混淆的現(xiàn)象時。敢于挑戰(zhàn)自我,不再泛泛地講兩個規(guī)律的區(qū)別與聯(lián)系,而采用反式教學寫出25×(4×8)=25×4+25×8的現(xiàn)象,讓學生既懂得乘法結合律和分配律的區(qū)別,又找到了乘法分配律概念的重點。

        在本節(jié)課的練習設計上,力求有針對性、有坡度的知識延伸,出示擴展型的練習,對分配律的概念加以升華。

        這些方面,只是我對自己原來的教學在反思與對比中覺得是對我而言較為進步的一點點。但是,在實際的課堂操作中,整個教學過程也出現(xiàn)了許多不盡人意的地方。

        比如:課堂上由于緊強導致只顧自己思路,而忘了對學生的回答或知識的恰當與否做出及時評定。還有,恐怕在規(guī)定時間內完不成任務,而把“總結”與“拓展”放錯了位置;學生參與的積極性沒有預想中那么高,可能與我相對缺乏激勵性語言有關等等問題。

        深入思考,覺得還是自己的業(yè)務不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:

        一、深入鉆研,在挖掘教材上下功夫。

        二、多聽課,學習別人長處,多查閱資料學習,提高自己的業(yè)務水平。

        最重要的是更新教學理念,在教學思路的“創(chuàng)新”上狠下功夫,讓學生看到的天天都是“新”老師,甚至忘記“傳統(tǒng)”形象,這是我最高的追求目標。

      《乘法分配律》教學反思8

        在教學本課之前,我安排了這樣的預習作業(yè):將左右兩邊相等的算式用線連起來(共五組),我故意安排了兩組不相等的,居然大部分同學都上當了,說明他們對乘法分配律的認識僅僅停留在表面,沒有認識到其實質。

        在教學例題時我特別加強了“分別乘”的指導,不但結合實例讓學生明白為何要分別乘再相加,而且用一些形象的箭頭讓學生感受分別乘的過程;而在學生探究了例題和試一試后,讓他們通過比較,體會在利用乘法分配律進行簡便計算時要根據(jù)具體情況選擇:有時合起來乘容易,有時分別乘更容易,要靈活運用。

        但是,今天的課堂作業(yè)讓我十分失望,我本以為“分別乘”的'指導比較到位,但還是有一些同學出現(xiàn)15×(20+3)=15×20+3這樣的錯誤,并且有兩名學生在解決實際問題中列出了(18+22)×15的算式后,還將它用乘法分配律展開計算,結果計算錯誤百出,如何讓學生靈活地運用所學的知識,我還得進一步地學習研究。

        本節(jié)課主要應用乘法分配律進行簡便計算,培養(yǎng)學生靈活合理地進行計算的意識和能力。課的一開始,我就復習乘法分配律,抓住其特點:合起來乘轉化成分別乘再加起來或者分別乘轉化成合起來乘。接著通過例題和試一試的教學,中間結合類型分別練習相應的題目,再通過比較讓學生明白這兩組題:有的時候是合起來乘簡便,有的時候是分別乘簡便,要根據(jù)具體的題目來選擇。對于后面的練習,我注意引導學生比較和辨析,使學生較深刻地理解適合用乘法分配律進行簡便計算的題目的結構形式,培養(yǎng)學生的審題能力,從而使學生更好地運用乘法分配律進行簡便計算。

      《乘法分配律》教學反思9

        本節(jié)課的教學我主要以幾何直觀為切入點,引導學生通過畫一畫,算一算等學習活動,小組合作,共同經歷乘法分配的探究過程,借助圖形探知、理解乘法分配律。

        1、問題情境的創(chuàng)設需更貼近學生的生活。

        試講過后與大家的感覺一樣,學生對設計草莓大棚的這個話題不是特別感興趣,接受工作室友們提出的寶貴意見后,想把情境創(chuàng)設改為設計學校的操場。由于學校里孩子們數(shù)量每年都在增加,孩子們喜歡的小操場越來越擠,想要擴建這個長方形的小操場,怎么辦呢?這個話題與孩子們的生活息息相關,應該比上一次設計的話題更容易引起他們的關注。

        2、教學的設計要尊重已有的知識經驗。

        本節(jié)課設計一始,所需的計算方法與原來學過的計算長方形面積有關。長方形的面積長乘寬,即使個別學生忘記也很容易喚醒。我鼓勵學生大膽去猜想, 在計算之前先要在頭腦中勾勒出長方形的模樣,激發(fā)學生在畫圖中梳理題中的數(shù)學信息。接下來的三次探究過程,先是教師設定長方形增加的長,再次是學生自己設定長度,再到后來自己設定三個量,給學生充分的想象和發(fā)揮空間,發(fā)揮學生主體的主動作用,即使學生在研究中遇到困難,有小組合作交流討論環(huán)節(jié)也使學生之間有了互相學習和提高的.過程。

        學生在已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在得出結論的過程中,有的同學用到了文字說明,也有同學是符號表示,還有的是字母表示,無論出現(xiàn)得出的哪種結論,老師都予以肯定和表揚,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。

        在學生展示匯報的過程中,雖然字母表示的方法更清晰,大家更喜歡,但課后覺得能用文字表述其實是更難的一件事,對這樣的孩子應該在課堂上再多給學生一些鼓勵與肯定,學生的學習興趣會更濃,他們學到的東西可能也會更多。

        3、在具體操作中完成由具體到抽象的思維演練。

        孩子們自己填寫的數(shù)字各不相同,在不同的計算方法和有不同的計算結果中,使學生感受到大量在實例計算后,大膽地完成了由猜想到驗證的過程。猜想是科學發(fā)現(xiàn)的前奏。學生的學習活動中不能沒有猜想,否則,主體性探究活動便缺少了內在的動力,自主學習的過程也成了失去目標的無意義操作。接下來的舉例就成了驗證猜想的必需,無論猜想的結論是“是”還是“非”,學生的思維一直是活躍著的,對學生都是有意義的。這個過程是教會學生學習與掌握探索方法的過程,是培養(yǎng)學生學習品格的過程。

        在研究的過程中,如何利用小組合作資源,把研究中遇到困難的,興趣保持不下去的同學的積極性再調動一下就更好了。

        課堂學習的過程,一切以師生間,生生間建立的平等交流這個平臺才得以順得完成,教學過程是師生共創(chuàng)共生的過程,師生成為共同建構學習的參與者。在上述的教學活動中,教師讓學生充分經歷學習過程,調動學生學習的熱情:想象——猜想——舉例——驗證,在欣賞學生的“閃光”處給學生“點撥”。師生在課堂交流中才得以共同成長。

      《乘法分配律》教學反思10

        1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵

        教學中通過解決“濟青高速公路全長多少千米”這一問題,結合具體的生活情景,得到了(110+90)x2=110x2+90x2”這一結果,教學中只注重了等式的外形特點,即兩個數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法意義的角度理解,即左邊表示200個2,右邊也表示200個2。所以(110+90)x2=110x2+90x2。

        2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習

        乘法結合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的.和乘一個數(shù)或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算是個有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?

        3、讓學生進行一題多解的練習,經歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結合律與乘法分配律的理解

        如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8)等。101×89①豎式計算;②(100+1)×89;③101×(80+9)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行簡算,乘法結合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當?shù)乃惴ǖ哪康摹?/p>

        4、多練

        針對典型題目多次進行練習。練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如68×25+68+68×74,32×125×25等。

      《乘法分配律》教學反思11

        乘法分配律是第三章的教學難點也是重點。這節(jié)課的設計。我是從學生的生活問題入手,利用與生活密切相關的情境圖植樹問題展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識。通過讓學生經歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成的過程;仡櫿麄教學過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:

        在教學中,通過這次植樹情境讓學生感到數(shù)學就是從身邊的生活中來的,激發(fā)學生學習的熱情!耙还灿卸嗌倜麑W生參加這次植樹活動?”。讓學生根據(jù)提供的條件,用不同的`方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

        重點是理解算式的意義,我們在引導中進行總結(4+2)個25的和也可以寫為25分別乘以4和2,再把他們的積相加的形式,接著讓同學們再次深化理解自己嘗試寫出幾個類似的算式,由于是網上教學,沒辦法直接展示學生的算式,于是我在大屏幕上寫出幾個算式,讓同學們來說一說他們的觀察到的算式,從而總結出乘法分配律的規(guī)律。進而通過計算,發(fā)現(xiàn)運用乘法分配律可以使得計算更加簡便。

        這節(jié)課的不足:

        當我們運用乘法分配律進行練習的時候,我發(fā)現(xiàn)學生在做題時會錯誤的把中間的+抄寫成×,導致錯誤。這說明學生沒有完全對乘法結合律和乘法分配律進行區(qū)分,還需要再次進行強調。

        這節(jié)課上對學生的主題地位有所忽視。雖然是網課教學,沒辦法與學生共同在一間教室,沒辦法與學生面對面教學,但是顧慮到時間的限制與學生的互動,留給學生的思考的時間不夠充分,接下來在教學設計時可以減少授課容量,留給學生充分的思考時間。

      《乘法分配律》教學反思12

        乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸?shù)脕淼挠浀酶。因此我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設計:

        一、讓學生從生活實例去理解乘法分配律

        一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)椋?+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。

        通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。

        如(4+2)×25其意義就是6個25與4×25+2×25所表示的`也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會

        借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。

        二、突破乘法分配律的教學難點

        讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。

        相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?

        學生主動去設計、解決,調動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。

        在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。

        當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。

        乘法分配律教學反思是必要的,所以老師們一定也要好好地去對待。不斷的反思,才可以促進不斷的進步。以上面的文章,希望與各位同行們共同進步。

      《乘法分配律》教學反思13

        《探索與發(fā)現(xiàn)(三)乘法分配律》教學反思

        東新四小學 王唯

        教學內容:

        小學四年級數(shù)學(上)《探索與發(fā)現(xiàn)(三)》乘法分配律》教材第48頁

        教學目標:

        1、經歷探索的過程,發(fā)現(xiàn)乘法分配律,并能用字母表示。

        2、會用乘法分配律進行一些簡便計算。

        教學重點:理解乘法分配律的特點。

        教學難點:乘法分配律的正確應用。

        教學過程:

        一、復習回顧

       。ǔ鍪菊n件1)計算

        35×2×5=35×(2×)

       。60×25)×4=65×(×4)

        (125×5)×8=(125×)×5

       。3×4)×5 × 6=(×)×(×)

        師:上節(jié)課,經過同學們的探索,我們發(fā)現(xiàn)了乘法交換律和結合律,并會應用這些定律進行簡便計算,今天咱們繼續(xù)探索,看看我們又會發(fā)現(xiàn)什么規(guī)律。讓我們一起走上探索之路。

        二、探究發(fā)現(xiàn)

       。ǔ霈F(xiàn)課件2)

        師:大家看,工人叔叔正在貼瓷磚呢,看到這幅圖,你發(fā)現(xiàn)了哪些數(shù)學信息?

        生:我發(fā)現(xiàn)有兩個叔叔在貼瓷磚

        生:我發(fā)現(xiàn)一個叔叔貼了4列,每列貼9塊,另一個叔叔貼了6列,每列貼了9塊。

        師:你最想知道什么問題?

        生:我想知道工人叔叔一共貼了多少塊瓷磚?(按鼠標出示問題) 師:你能估計出工人叔叔一共貼了多少塊瓷磚嗎?

        生:我估計大約有100塊瓷磚

        生:我估計大約有90塊瓷磚。

        師:請同學們用自己喜歡的方法來計算瓷磚究竟有多少塊。(學生做,小組討論,教師巡視)

        師:誰來向大家介紹一下自己的做法?

        生:6×9+4×9(板書)

        =54+36

        =90

        分別算出正面和側面貼的塊數(shù),再相加,就是貼的總塊數(shù)。

        生:(6+4)×9(板書)

        = 10×9

        =90(塊)

        因為每列都是9塊,所以我先算出一共有多少列,再用列數(shù)去乘每列的塊數(shù),就是一共貼瓷磚的塊數(shù)。

        師:同學們的計算方法都很好,請同學們仔細觀察兩種算法,你能發(fā)現(xiàn)什么?

        生:我發(fā)現(xiàn)計算方法不同,但結果卻是一樣的。

        6×9+4×9 = (6+4)×9(板書)

        師:請同學們仔細觀察上面兩道算式的特點,你能再舉一些這樣類似的例子嗎?

       。▽W生舉例,教師板書)

        師:這幾們同學舉的例子符合要求嗎?請在小組中驗證一下。 (小組匯報)

        小組1:符合要求,因為每組中兩個算式都是相等的。

        小組2:在每組的兩個算式中,一個是兩個數(shù)的'和去乘一個數(shù),另一個是用這兩個數(shù)分別是去乘同一個數(shù),再相加,符合要求。

       。ò鍟茫竭B接算式)

        師:比較等號左右兩邊的算式,從它們的特點和結果相等中你能發(fā)現(xiàn)什么規(guī)律,小組再討論一下。

        小組1:我們小組發(fā)現(xiàn),只要符合上面題目要求的算式,結果都是一樣的。

        小組2:我們小組發(fā)現(xiàn),兩個不同的數(shù)分別去和同一個數(shù)相乘,然后再相加,可以先把這兩個數(shù)相加再一起去乘第三個數(shù),結果不變。 結論(課件2):師:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。這叫做 乘 法 分 配 律。它是我們學習的關于乘法的第三個定律。

        師:大家齊讀一遍。

        師:和同桌說一說自己對乘法分配律的理解。

        師:上節(jié)課我們學習了用字母來表示乘法交換律和結合律,現(xiàn)在你能用字母的形式表示出乘法分配律嗎?用a,b,c分別表示這三個數(shù),試著寫一寫吧。

        (a+b)×c=a×c+b×c

        師:這叫做乘法分配律

        三、鞏固練習:

        1、計算

       。80+4)×25 34×72+34×28

        師:觀察算式特點,看是否符合要求,能否應用乘法分配律使計算簡便。

        2、判斷正誤

        ( 25 + 7 )×4 = 25 ×4 ×7×4 ( )

        35×9 + 35

        = 35×( 9 + 1 )

        = 350 - - - - ( )

        3、填一填

       。12+40)×3=× 3 +×3

        15×(40 + 8) = 15×+ 15×

        78×20+22×20=(+ )×20

        四、總結

        師:說說這節(jié)課你有什么收獲?

        師:今天同學們通過自己的探索,發(fā)現(xiàn)了乘法分配律,你們真的很棒。乘法分配律是一條很重要的運算定律。應用乘法分配律既能使一些計算簡便,也能幫助我們解決生活中的一些數(shù)學問題,在我們的生活和學習中應用非常廣泛。同學們要在理解的基礎上牢牢記住它,希望它永遠成為你的好朋友,伴你生活、成長。

        [板書設計]

        探索與發(fā)現(xiàn)(三)

        -----乘法分配律

       。╝+b)×c=a×c+b×c

        6×9+4×9 =(6+4)×9

       。40+4)×25 = 40×25+4×25

       。64+36)×42 = 42×64+42×36

      《乘法分配律》教學反思14

        乘法分配律是所有運算律中形式變化較為復雜,且跨越加法和乘法兩級運算的定律,對學生的記憶、理解與運用都提出了較高的要求。教學中,教師需要在探析錯因、讀法糾正、變式訓練上做足功夫,巧制策略。學生在正式接觸乘法分配律之前,學生陸續(xù)掌握了加法和乘法的交換律和結合律,并能熟練使用這些定律進行簡單的運算。照常理推測,同為等式恒等變換,借助已有的經驗,學生對于乘法分配律應該很容易接受。然而,實際情況卻不容樂觀,學生在運用乘法分配律進行簡算時出錯率較高。為此,教師應巧制策略,幫助學生克服困難。

        如何幫學生建立數(shù)學模型,展現(xiàn)乘法分配律的性質,是教學的根本,也是學生理解的前提。要讓學生對乘法分配律有深刻準確的記憶和理解,用最符合學生心理特征的方式進行闡述才是上策。

        為此,我改進了教學方式——切換讀法,化難為易。

        [例題]植樹節(jié)那天,學校組織二(1)班的學生植樹,上午植樹4小時,下午植樹2小時,平均每小時植樹25棵,問:植樹節(jié)那天,學生一共植樹多少棵?

        步驟1:學生列式多為“25×4+25×2”和“25×(4+2)”兩種式子。

        步驟2:簡述各算式的算理:25×4+25×2表示先分別求出半天的植樹數(shù),再求一天的植樹總數(shù);25×(4+2)表示先求植樹總時長,再求植樹總數(shù)。

        步驟3:引導學生從數(shù)字計算的角度去理解:25×4+25×2表示兩個積的和,25×(4+2)表示兩個數(shù)的積。接著用一句話揭示它們的'共同點:4個25加上2個25等于6個25,6就是4與2的和。以實例為對象,換成通俗的說法,完美呈現(xiàn)了算式的內涵,深化了學生的理解。

        步驟4:針對代數(shù)式表示的乘法分配律“a×c+b×c=(a+b)×c”,讓學生嘗試用通俗方式解讀,即a個c加上b個c等于(a+b)個c。

        實踐證明,滲入思維的讀法比機械復讀教學效果要好。

      《乘法分配律》教學反思15

        乘法分配律是四年級學習的重點,也是難點之一。它是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的,是一節(jié)比較抽象的概念課,教學是我根據(jù)教學內容的特點,為學生提供多種探究方法,激發(fā)學生的自主意識。

        一、在對本節(jié)課的教學目標上,我定位在:

       。1)通過學生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。

        (2)初步感受乘法分配律能使一些計算簡便。

       。3)培養(yǎng)學生分析、推理、概括的思維能力。

        二、結合自己所教案例,對本節(jié)課教學策略進行以下幾點簡要分析:

        1、總體上我的教學思路是由具體——抽象——具體。

        在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,老師都予以肯定和表揚,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。

        2、從學生已有知識出發(fā)。

        教師要深入了解各層次學生思維實際,提供充分的信息,為各層次學生參與探索學習活動創(chuàng)造條件,沒有學生主體的主動參與,不會有學生主體的主動發(fā)展,教師若不了解學生實際,一下子把學習目標定得很高,勢必會造成部分學生高不可攀而坐等觀望,失去信心浪費寶貴的學習時間。以往教學該課時都是以計算引入,有復習舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設計了一個植樹的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。這樣所設的起點較低,學生比較容易接受。

        3、鼓勵學生大膽猜想。

        猜想是科學發(fā)現(xiàn)的前奏。學生的學習活動中同樣不能沒有猜想,否則,主體性探究活動便缺少了內在的動力,自主學習的過程也成了失去目標的無意義操作。學生看到加法交換律和加法結合律,從直觀上產生了關于乘法運算定律的猜想。于是,接下來的舉例就成了驗證猜想的'必需,無論猜想的結論是“是”還是“非”,學生的思維一直是活躍著的,對學生都是有意義的。這個過程是教會學生學習與掌握探索方法的過程,是培養(yǎng)學生學習品格的過程。

        4、師生平等交流。

        教學過程是師生共創(chuàng)共生的過程,新課程確定的培養(yǎng)目標和所倡導的學習方式要求教師必須轉換角色。改變已有的教學行為,教師必須從“師道尊嚴”的架子中走出來,與學生平等地參與教學,成為共同建構學習的參與者。在以上教學片斷中,教師讓學生充分經歷學習過程,調動學生學習的熱情:猜想——傾聽——舉例——驗證,在欣賞學生的“閃光”處給學生“點撥”。教師沒有過多的講授,也沒有花大量的時間去刻意的創(chuàng)設教學情境,只是做喚醒學生主體意識的工作,引導學生大膽猜想,大膽表達。學生借助已有的知識經驗,自主解決新問題,使學生的主體地位得以體現(xiàn)。

        5、將學生放在主體位置。

        把學生放在主動探索知識規(guī)律的主體位置上,讓學生能自由地利用自己的知識經驗、思維方式去嘗試解決問題。在探究這一系列的等式有什么共同點的活動中,學生涌現(xiàn)出的各種說法,說明學生的智力潛能是巨大的。所以我在這里花了較多的時間,讓學生多說,談談各自不同的看法,說說自己的新發(fā)現(xiàn),教師盡可能少說,為的就是要還給學生自由探索的時間和空間,從而能使學生的主動性、自主性和創(chuàng)造性得到充分的發(fā)揮。

        三、教學中的不足和改進之處:

        在教學過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內容時,學生難以完整地總結出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等,今后的工作中,要多向以下幾個方面努力:

        1、多聽課,多學習。尤其是優(yōu)秀教師的課,學習他們的新思想、新方法,改善課堂教學,提高課堂教學藝術和課堂效率。

        2、加強同科組教師之間的溝通和交流,相互學習,取長補短,共同進步。

        3、認真鉆研教材,把握好教材的重點、難點、關鍵點、易混點,上課時才能做到心中有數(shù),游刃有余。

      【《乘法分配律》教學反思】相關文章:

      乘法分配律教學反思04-13

      《乘法分配律》教學反思04-12

      人教版乘法分配律教學反思04-16

      《乘法分配律》教學反思范文05-01

      《乘法分配律》教學反思(精選27篇)07-07

      乘法分配律教學反思(精選11篇)03-29

      乘法分配律教學反思(精選8篇)04-14

      乘法分配律教學反思(精選6篇)04-14

      乘法分配律教學反思15篇04-21