亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      時(shí)間:2023-02-02 12:26:23 總結(jié) 投訴 投稿

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)

        總結(jié)是事后對(duì)某一時(shí)期、某一項(xiàng)目或某些工作進(jìn)行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它可以有效鍛煉我們的語(yǔ)言組織能力,為此我們要做好回顧,寫好總結(jié)。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?下面是小編收集整理的高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

        不等式的解集:

       、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

       、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

        ③求不等式解集的`過(guò)程叫做解不等式。

        不等式的判定:

       、俪R姷牟坏忍(hào)有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

       、谠诓坏仁健癮>b”或“a

       、鄄坏忍(hào)的開口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較小;

       、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

        任一x?A,x?B,記做AB

        AB,BAA=B

        AB={x|x?A,且x?B}

        AB={x|x?A,或x?B}

        Card(AB)=card(A)+card(B)-card(AB)

        (1)命題

        原命題若p則q

        逆命題若q則p

        否命題若p則q

        逆否命題若q,則p

        (2)AB,A是B成立的充分條件

        BA,A是B成立的必要條件

        AB,A是B成立的充要條件

        1.集合元素具有①確定性;②互異性;③無(wú)序性

        2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

        (3)集合的運(yùn)算

       、貯∩(B∪C)=(A∩B)∪(A∩C)

       、贑u(A∩B)=CuA∪CuB

        Cu(A∪B)=CuA∩CuB

        (4)集合的性質(zhì)

        n元集合的字集數(shù):2n

        真子集數(shù):2n-1;

        非空真子集數(shù):2n-2

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

        復(fù)數(shù)的概念:

        形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

        復(fù)數(shù)的表示:

        復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。

        復(fù)數(shù)的幾何意義:

        (1)復(fù)平面、實(shí)軸、虛軸:

        點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)

        (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即

        這是因?yàn),每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過(guò)來(lái),復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的`一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。

        這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

        復(fù)數(shù)的模:

        復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

        虛數(shù)單位i:

        (1)它的平方等于-1,即i2=-1;

        (2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立

        (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

        (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

        復(fù)數(shù)模的性質(zhì):

        復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

        對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

        必修一

        第一章:集合和函數(shù)的基本概念

        這一章的易錯(cuò)點(diǎn),都集中在空集這一概念上,而每次考試基本都會(huì)在選填題上涉及這一概念,一個(gè)不小心就會(huì)丟分。次一級(jí)的知識(shí)點(diǎn)就是集合的韋恩圖、會(huì)畫圖,掌握了這些,集合的“并、補(bǔ)、交、非”也就解決了。

        還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。

        第二章:基本初等函數(shù)

        ——指數(shù)、對(duì)數(shù)、冪函數(shù)三大函數(shù)的運(yùn)算性質(zhì)及圖像

        函數(shù)的幾大要素和相關(guān)考點(diǎn)基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數(shù)的運(yùn)算公式,多記多用,多做一點(diǎn)練習(xí),基本就沒(méi)問(wèn)題。

        函數(shù)圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì)熟練的畫出函數(shù)圖像,定義域、值域、零點(diǎn)等等。對(duì)于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時(shí)圖像的不同及函數(shù)值的大小關(guān)系,這也是常考點(diǎn)。另外指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的對(duì)立關(guān)系及其相互之間要怎樣轉(zhuǎn)化等問(wèn)題,需要著重回看課本例題。

        第三章:函數(shù)的應(yīng)用

        這一章主要考是函數(shù)與方程的結(jié)合,其實(shí)就是函數(shù)的零點(diǎn),也就是函數(shù)圖像與X軸的交點(diǎn)。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì)在這三者之間靈活轉(zhuǎn)化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計(jì)算加得必有零點(diǎn),連續(xù)函數(shù)在x軸上方下方有定義則有零點(diǎn)等等,這些難點(diǎn)對(duì)應(yīng)的證明方法都要記住,多練習(xí)。二次函數(shù)的零點(diǎn)的Δ判別法,這個(gè)需要你看懂定義,多畫多做題。

        必修二

        第一章:空間幾何

        三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實(shí)物從而計(jì)算就需要比較強(qiáng)的空間感,要能從三張平面圖中慢慢在腦海中畫出實(shí)物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實(shí)物圖和平面圖結(jié)合起來(lái)看,先熟練地正推,再慢慢的'逆推(建議用紙做一個(gè)立方體來(lái)找感覺(jué))。

        在做題時(shí)結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺(tái)體的表面積和體積,把公式記牢問(wèn)題就不大。

        第二章:點(diǎn)、直線、平面之間的位置關(guān)系

        這一章除了面與面的相交外,對(duì)空間概念的要求不強(qiáng),大部分都可以直接畫圖,這就要求學(xué)生多看圖。自己畫草圖的時(shí)候要嚴(yán)格注意好實(shí)線虛線,這是個(gè)規(guī)范性問(wèn)題。

        關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時(shí)能用圖形語(yǔ)言、文字語(yǔ)言、數(shù)學(xué)表達(dá)式表示出來(lái)。只要這些全部過(guò)關(guān)這一章就解決了一大半。這一章的難點(diǎn)在于二面角這個(gè)概念,大多同學(xué)即使知道有這個(gè)概念,也無(wú)法理解怎么在二面里面做出這個(gè)角。對(duì)這種情況只有從定義入手,先要把定義記牢,再多做多看,這個(gè)沒(méi)有什么捷徑可走。

        第三章:直線與方程

        這一章主要講斜率與直線的位置關(guān)系,只要搞清楚直線平行、垂直的斜率表示問(wèn)題就錯(cuò)不了。需要注意的是當(dāng)直線垂直時(shí)斜率不存在的情況是考試中的?键c(diǎn)。另外直線方程的幾種形式所涉及到的一般公式,會(huì)用就行,要求不高。點(diǎn)與點(diǎn)的距離、點(diǎn)與直線的距離、直線與直線的距離,只要直接套用公式就行,沒(méi)什么難點(diǎn)。

        第四章:圓與方程

        能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號(hào),另一邊不含,這時(shí)就要注意開方后定義域或值域的限制。通過(guò)點(diǎn)到點(diǎn)的距離、點(diǎn)到直線的距離、圓半徑的大小關(guān)系來(lái)判斷點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對(duì)稱性引起的相切、相交等的多種情況,自己把幾種對(duì)稱的形式羅列出來(lái),多思考就不難理解了。

        必修三

        總的來(lái)說(shuō)這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計(jì)算。

        程序框圖與三種算法語(yǔ)句的結(jié)合,及框圖的算法表示,不要用常規(guī)的語(yǔ)言來(lái)理解,否則你會(huì)在這樣的題型中栽跟頭。

        秦九韶算法是重點(diǎn),要牢記算法的公式。

        統(tǒng)計(jì)就是對(duì)一堆數(shù)據(jù)的處理,考試也是以計(jì)算為主,會(huì)從條形圖中計(jì)算出中位數(shù)等數(shù)字特征,對(duì)于回歸問(wèn)題,只要記住公式,也就是個(gè)計(jì)算問(wèn)題。

        概率,主要就只幾何概型、古典概型。幾何概型只要會(huì)找表示所求事件的長(zhǎng)度面積等,古典概型只要能表示出全部事件就可以。

        必修四

        第一章:三角函數(shù)

        考試必在這一塊出題,且題量不小!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒(méi)有太大難度,只要會(huì)畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計(jì)算A、B的值和周期,及恒等變化時(shí)的圖像及性質(zhì)變化,這部分的知識(shí)點(diǎn)內(nèi)容較多,需要多花時(shí)間,不要再定義上死扣,要從圖像和例題入手。

        第二章:平面向量

        向量的運(yùn)算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計(jì)算的時(shí)候記住要“同起點(diǎn)的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達(dá),是計(jì)算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點(diǎn)坐標(biāo)公式是重點(diǎn)內(nèi)容,也是難點(diǎn)內(nèi)容,要花心思記憶。

        第三章:三角恒等變換

        這一章公式特別多,像差倍半角公式這類內(nèi)容常會(huì)出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點(diǎn),就是三角恒等變換是有一定規(guī)律的,記憶的時(shí)候可以集合三角函數(shù)去記。

        必修五

        第一章:解三角形

        掌握正弦、余弦公式及其變式、推論、三角面積公式即可。

        第二章:數(shù)列

        等差、等比數(shù)列的通項(xiàng)公式、前n項(xiàng)及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來(lái)比較簡(jiǎn)單,但考驗(yàn)對(duì)其推導(dǎo)、計(jì)算、活用的層面較深,因此要仔細(xì)?荚囶}中,通項(xiàng)公式、前n項(xiàng)和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒(méi)問(wèn)題了。

        第三章:不等式

        這一章一般用線性規(guī)劃的形式來(lái)考察學(xué)生,這種題通常是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實(shí)際問(wèn)題的限制要求來(lái)求最值。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

        第一部分集合

       。1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

        (2)注意:討論的時(shí)候不要遺忘了的情況。

        第二部分函數(shù)與導(dǎo)數(shù)

        1、映射:注意

       、俚谝粋(gè)集合中的元素必須有象;

       、谝粚(duì)一,或多對(duì)一。

        2、函數(shù)值域的求法:

        ①分析法;

       、谂浞椒;

       、叟袆e式法;

       、芾煤瘮(shù)單調(diào)性;

       、輷Q元法;

       、蘩镁挡坏仁剑

       、呃脭(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);

       、嗬煤瘮(shù)有界性;

       、釋(dǎo)數(shù)法

        3、復(fù)合函數(shù)的有關(guān)問(wèn)題

       。1)復(fù)合函數(shù)定義域求法:

       、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

        ②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

       。2)復(fù)合函數(shù)單調(diào)性的判定:

       、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

       、诜謩e研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

       、鄹鶕(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

        注意:外函數(shù)的'定義域是內(nèi)函數(shù)的值域。

        4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。

        5、函數(shù)的奇偶性

       。1)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件;

        (2)是奇函數(shù);

        (3)是偶函數(shù);

       。4)奇函數(shù)在原點(diǎn)有定義,則;

       。5)在關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

       。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

        1.數(shù)列的定義

        按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).

        (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

        (2)在數(shù)列的定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

        (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.

        (5)次序?qū)τ跀?shù)列來(lái)講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

        2.數(shù)列的分類

        (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無(wú)窮數(shù)列.在寫數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數(shù)列.

        (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.

        3.數(shù)列的通項(xiàng)公式

        數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來(lái)表示的,

        這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來(lái)一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無(wú)其他說(shuō)明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4,…,

        由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒(méi)有通用的方法可循.

        再?gòu)?qiáng)調(diào)對(duì)于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):

        (1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.

        (2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng).

        (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.

        如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒(méi)有通項(xiàng)公式.

        (4)有的數(shù)列的.通項(xiàng)公式,形式上不一定是的,正如舉例中的:

        (5)有些數(shù)列,只給出它的前幾項(xiàng),并沒(méi)有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不.

        4.數(shù)列的圖象

        對(duì)于數(shù)列4,5,6,7,8,9,10每一項(xiàng)的序號(hào)與這一項(xiàng)有下面的對(duì)應(yīng)關(guān)系:

        序號(hào):1234567

        項(xiàng):45678910

        這就是說(shuō),上面可以看成是一個(gè)序號(hào)集合到另一個(gè)數(shù)的集合的映射.因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎疦(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí),對(duì)應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

        由于數(shù)列的項(xiàng)是函數(shù)值,序號(hào)是自變量,數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)和解析式.

        數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的

        數(shù)列用圖象來(lái)表示,可以以序號(hào)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),描點(diǎn)畫圖來(lái)表示一個(gè)數(shù)列,在畫圖時(shí),為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長(zhǎng)度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

        把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無(wú)限個(gè)或有限個(gè)孤立的點(diǎn).

        5.遞推數(shù)列

        一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個(gè)數(shù)列:4,5,6,7,8,9,10.①

        數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

        ①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。

        ②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形。

       、翘厥饫忮F的頂點(diǎn)在底面的射影位置:

        ①棱錐的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。

       、诶忮F的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。

       、劾忮F的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心。

       、芾忮F的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心。

       、萑忮F有兩組對(duì)棱垂直,則頂點(diǎn)在底面的`射影為三角形垂心。

       、奕忮F的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心。

       、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

       、嗝總(gè)四面體都有內(nèi)切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑。

        [注]:

        i、各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

        ii、若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直。

        簡(jiǎn)證:AB⊥CD,AC⊥BD

        BC⊥AD。令得,已知?jiǎng)t。

        iii、空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形。

        iv、若是四邊長(zhǎng)與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形。

        簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

        EFGH為長(zhǎng)方形。若對(duì)角線等,則為正方形。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

        1、函數(shù)的奇偶性

        (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

        (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

        (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

        (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

        (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

        2、復(fù)合函數(shù)的有關(guān)問(wèn)題

        (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

        (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

        3、函數(shù)圖像(或方程曲線的對(duì)稱性)

        (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

        (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

        (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

        (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

        (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

        (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

        4、函數(shù)的周期性

        (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

        (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

        (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

        (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

        (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

        (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

        5、方程k=f(x)有解k∈D(D為f(x)的值域);

        6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

        7、(1)(a>0a≠1,b>0,n∈R+);

        (2)logaN=(a>0,a≠1,b>0,b≠1);

        (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

        (4)alogaN=N(a>0,a≠1,N>0);

        8、判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

        (1)A中元素必須都有象且;

        (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

        9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

        10、對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

        (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

        (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

        (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

        (4)周期函數(shù)不存在反函數(shù);

        (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

        (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

        11、處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

        二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的.相對(duì)位置關(guān)系;

        12、依據(jù)單調(diào)性

        利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題;

        13、恒成立問(wèn)題的處理方法

        (1)分離參數(shù)法;

        (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

        a(1)=a,a(n)為公差為r的等差數(shù)列

        通項(xiàng)公式:

        a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

        可用歸納法證明。

        n=1時(shí),a(1)=a+(1-1)r=a。成立。

        假設(shè)n=k時(shí),等差數(shù)列的通項(xiàng)公式成立。a(k)=a+(k-1)r

        則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

        通項(xiàng)公式也成立。

        因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。

        求和公式:

        S(n)=a(1)+a(2)+、、、+a(n)

        =a+(a+r)+、、、+[a+(n-1)r]

        =na+r[1+2+、、、+(n-1)]

        =na+n(n-1)r/2

        同樣,可用歸納法證明求和公式。

        a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

        通項(xiàng)公式:

        a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

        可用歸納法證明等比數(shù)列的通項(xiàng)公式。

        求和公式:

        S(n)=a(1)+a(2)+、、、+a(n)

        =a+ar+、、、+ar^(n-1)

        =a[1+r+、、、+r^(n-1)]

        r不等于1時(shí),

        S(n)=a[1-r^n]/[1-r]

        r=1時(shí),

        S(n)=na、

        同樣,可用歸納法證明求和公式。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

        1、三類角的求法:

       、僬页龌蜃鞒鲇嘘P(guān)的角。

       、谧C明其符合定義,并指出所求作的角。

        ③計(jì)算大。ń庵苯侨切危蛴糜嘞叶ɡ恚。

        2、正棱柱——底面為正多邊形的直棱柱

        正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

        正棱錐的計(jì)算集中在四個(gè)直角三角形中:

        3、怎樣判斷直線l與圓C的位置關(guān)系?

        圓心到直線的`距離與圓的半徑比較。

        直線與圓相交時(shí),注意利用圓的“垂徑定理”。

        4、對(duì)線性規(guī)劃問(wèn)題:

        作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

        培養(yǎng)興趣是關(guān)鍵。學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?

       。1)欣賞數(shù)學(xué)的美感

        比如幾何圖形中的對(duì)稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

        通過(guò)對(duì)旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對(duì)勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的絕對(duì)值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。

       。2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

        例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識(shí)就可以理解、學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊

       。3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。

        利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識(shí)講得更具體形象,學(xué)生也更容易接受,理解更深。

        (4)適當(dāng)看一些科普類的書籍和文章。

        比如:學(xué)圓錐曲線的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對(duì)此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

        任一x=A,x=B,記做AB

        AB,BAA=B

        AB={x|x=A,且x=B}

        AB={x|x=A,或x=B}

        Card(AB)=card(A)+card(B)—card(AB)

       。1)命題

        原命題若p則q

        逆命題若q則p

        否命題若p則q

        逆否命題若q,則p

       。2)AB,A是B成立的充分條件

        BA,A是B成立的必要條件

        AB,A是B成立的.充要條件

        1、集合元素具有

       、俅_定性;

       、诨ギ愋裕

       、蹮o(wú)序性

        2、集合表示方法

       、倭信e法;

        ②描述法;

       、垌f恩圖;

       、軘(shù)軸法

       。3)集合的運(yùn)算

       、貯∩(B∪C)=(A∩B)∪(A∩C)

       、贑u(A∩B)=CuA∪CuB

        Cu(A∪B)=CuA∩CuB

       。4)集合的性質(zhì)

        n元集合的字集數(shù):2n

        真子集數(shù):2n—1;

        非空真子集數(shù):2n—2

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

        隨機(jī)抽樣

        簡(jiǎn)介

        (抽簽法、隨機(jī)樣數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的主要特征是從總體中逐個(gè)抽取;

        優(yōu)點(diǎn):操作簡(jiǎn)便易行

        缺點(diǎn):總體過(guò)大不易實(shí)行

        方法

        (1)抽簽法

        一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。

        (抽簽法簡(jiǎn)單易行,適用于總體中的個(gè)數(shù)不多時(shí)。當(dāng)總體中的個(gè)體數(shù)較多時(shí),將總體“攪拌均勻”就比較困難,用抽簽法產(chǎn)生的樣本代表性差的可能性很大)

        (2)隨機(jī)數(shù)法

        隨機(jī)抽樣中,另一個(gè)經(jīng)常被采用的方法是隨機(jī)數(shù)法,即利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣。

        分層抽樣

        簡(jiǎn)介

        分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個(gè)體有明顯差異。共同點(diǎn):每個(gè)個(gè)體被抽到的概率都相等N/M。

        定義

        一般地,在抽樣時(shí),將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

        整群抽樣

        定義

        什么是整群抽樣

        整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個(gè)互不交叉、互不重復(fù)的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。

        應(yīng)用整群抽樣時(shí),要求各群有較好的代表性,即群內(nèi)各單位的差異要大,群間差異要小。

        優(yōu)缺點(diǎn)

        整群抽樣的優(yōu)點(diǎn)是實(shí)施方便、節(jié)省經(jīng)費(fèi);

        整群抽樣的缺點(diǎn)是往往由于不同群之間的差異較大,由此而引起的`抽樣誤差往往大于簡(jiǎn)單隨機(jī)抽樣。

        實(shí)施步驟

        先將總體分為i個(gè)群,然后從i個(gè)群鐘隨即抽取若干個(gè)群,對(duì)這些群內(nèi)所有個(gè)體或單元均進(jìn)行調(diào)查。抽樣過(guò)程可分為以下幾個(gè)步驟:

        一、確定分群的標(biāo)注

        二、總體(N)分成若干個(gè)互不重疊的部分,每個(gè)部分為一群。

        三、據(jù)各樣本量,確定應(yīng)該抽取的群數(shù)。

        四、采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。

        例如,調(diào)查中學(xué)生患近視眼的情況,抽某一個(gè)班做統(tǒng)計(jì);進(jìn)行產(chǎn)品檢驗(yàn);每隔8h抽1h生產(chǎn)的全部產(chǎn)品進(jìn)行檢驗(yàn)等。

        與分層抽樣的區(qū)別

        整群抽樣與分層抽樣在形式上有相似之處,但實(shí)際上差別很大。

        分層抽樣要求各層之間的差異很大,層內(nèi)個(gè)體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內(nèi)個(gè)體或單元差異大;

        分層抽樣的樣本是從每個(gè)層內(nèi)抽取若干單元或個(gè)體構(gòu)成,而整群抽樣則是要么整群抽取,要么整群不被抽取。

        系統(tǒng)抽樣

        定義

        當(dāng)總體中的個(gè)體數(shù)較多時(shí),采用簡(jiǎn)單隨機(jī)抽樣顯得較為費(fèi)事。這時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。

        步驟

        一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:

        (1)先將總體的N個(gè)個(gè)體編號(hào)。有時(shí)可直接利用個(gè)體自身所帶的號(hào)碼,如學(xué)號(hào)、準(zhǔn)考證號(hào)、門牌號(hào)等;

        (2)確定分段間隔k,對(duì)編號(hào)進(jìn)行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時(shí),取k=N/n;

        (3)在第一段用簡(jiǎn)單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤k);

        (4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個(gè)個(gè)體編號(hào)(l+k),再加k得到第3個(gè)個(gè)體編號(hào)(l+2k),依次進(jìn)行下去,直到獲取整個(gè)樣本。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

        1、圓柱體:

        表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

        2、圓錐體:

        表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

        3、正方體

        a—邊長(zhǎng),S=6a2,V=a3

        4、長(zhǎng)方體

        a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc

        5、棱柱

        S—底面積h—高V=Sh

        6、棱錐

        S—底面積h—高V=Sh/3

        7、棱臺(tái)

        S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3

        8、擬柱體

        S1—上底面積,S2—下底面積,S0—中截面積

        h—高,V=h(S1+S2+4S0)/6

        9、圓柱

        r—底半徑,h—高,C—底面周長(zhǎng)

        S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

        S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

        10、空心圓柱

        R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

        11、直圓錐

        r—底半徑h—高V=πr^2h/3

        12、圓臺(tái)

        r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

        13、球

        r—半徑d—直徑V=4/3πr^3=πd^3/6

        14、球缺

        h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

        15、球臺(tái)

        r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

        16、圓環(huán)體

        R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑

        V=2π2Rr2=π2Dd2/4

        17、桶狀體

        D—桶腹直徑d—桶底直徑h—桶高

        V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

        V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

        三角函數(shù)。

        注意歸一公式、誘導(dǎo)公式的正確性。

        數(shù)列題。

        1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

        2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的'式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

        3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

        立體幾何題。

        1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

        2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

        3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

        概率問(wèn)題。

        1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

        2、搞清是什么概率模型,套用哪個(gè)公式;

        3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

        4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

        5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;

        6、注意放回抽樣,不放回抽樣;

        正弦、余弦典型例題。

        1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

        2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

        3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

        4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

        5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

        正弦、余弦解題訣竅。

        1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

        2、已知三邊,或兩邊及其夾角用余弦定理

        3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

        考點(diǎn)一:集合與簡(jiǎn)易邏輯

        集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和邏輯推理。

        考點(diǎn)二:函數(shù)與導(dǎo)數(shù)

        函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。

        考點(diǎn)三:三角函數(shù)與平面向量

        一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問(wèn)題是“新熱點(diǎn)”題型、

        考點(diǎn)四:數(shù)列與不等式

        不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問(wèn)題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查、在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目、

        考點(diǎn)五:立體幾何與空間向量

        一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。

        考點(diǎn)六:解析幾何

        一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的'計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。

        考點(diǎn)七:算法復(fù)數(shù)推理與證明

        高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”、考查的熱點(diǎn)是流程圖的識(shí)別與算法語(yǔ)言的閱讀理解、算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流、復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問(wèn)、

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

        1.課程內(nèi)容:

        必修課程由5個(gè)模塊組成:

        必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對(duì)、冪函數(shù))

        必修2:立體幾何初步、平面解析幾何初步。

        必修3:算法初步、統(tǒng)計(jì)、概率。

        必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

        必修5:解三角形、數(shù)列、不等式。

        以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。

        上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識(shí)的發(fā)生、發(fā)展過(guò)程和實(shí)際應(yīng)用,而不在技巧與難度上做過(guò)高的要求。

        此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。

        2.重難點(diǎn)及考點(diǎn):

        重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

        難點(diǎn):函數(shù)、圓錐曲線

        高考相關(guān)考點(diǎn):

       、偶吓c簡(jiǎn)易邏輯:集合的概念與運(yùn)算、簡(jiǎn)易邏輯、充要條件

        ⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

       、菙(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

       、热呛瘮(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

       、善矫嫦蛄浚河嘘P(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

       、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式、不等式的應(yīng)用

       、酥本和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

       、虉A錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用

       、椭本、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

       、闻帕小⒔M合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

       、细怕逝c統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

       、袑(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

        ⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

       、僬忮F各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

       、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.

       、翘厥饫忮F的頂點(diǎn)在底面的射影位置:

       、倮忮F的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

        ②棱錐的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

       、劾忮F的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

        ④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

        ⑤三棱錐有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.

       、奕忮F的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.

       、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

       、嗝總(gè)四面體都有內(nèi)切球,球心

        是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.

        [注]:i.各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

        ii.若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直.

        簡(jiǎn)證:AB⊥CD,AC⊥BD

        BC⊥AD.令得,已知?jiǎng)t.

        iii.空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.

        iv.若是四邊長(zhǎng)與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.

        簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

        EFGH為長(zhǎng)方形.若對(duì)角線等,則為正方形.

        立體幾何初步

        (1)棱柱:

        定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

        分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

        表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱

        幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

        (2)棱錐

        定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

        分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

        表示:用各頂點(diǎn)字母,如五棱錐

        幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

        (3)棱臺(tái):

        定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

        分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

        表示:用各頂點(diǎn)字母,如五棱臺(tái)

        幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

        (4)圓柱:

        定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

        (5)圓錐:

        定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

        幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

        (6)圓臺(tái):

        定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

        幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

        (7)球體:

        定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

        (1)先看“充分條件和必要條件”

        當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

        但為什么說(shuō)q是p的必要條件呢?

        事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說(shuō),q對(duì)于p是必不可少的,因而是必要的。

        (2)再看“充要條件”

        若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作p<=>q

        (3)定義與充要條件

        數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說(shuō),一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。

        顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語(yǔ)句來(lái)表示。

        “充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來(lái)表示,其中“當(dāng)”表示“充分”!皟H當(dāng)”表示“必要”。

        (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。

        1.函數(shù)的奇偶性

        (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

        (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

        (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

        (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

        (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

        2.復(fù)合函數(shù)的有關(guān)問(wèn)題

        (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

        (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

        3.函數(shù)圖像(或方程曲線的對(duì)稱性)

        (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

        (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

        (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

        (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

        (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

        (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

        4.函數(shù)的周期性

        (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

        (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

        (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

        (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

        (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

        (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

        5.方程k=f(x)有解k∈D(D為f(x)的值域);

        6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

        7.(1)(a>0,a≠1,b>0,n∈R+);

        (2)logaN=(a>0,a≠1,b>0,b≠1);

        (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

        (4)alogaN=N(a>0,a≠1,N>0);

        8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

        (1)A中元素必須都有象且;

        (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

        9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

        10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

        (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

        (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

        (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

        (4)周期函數(shù)不存在反函數(shù);

        (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

        (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

        11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

        二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

        12.依據(jù)單調(diào)性

        利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題;

        13.恒成立問(wèn)題的處理方法

        (1)分離參數(shù)法;

        (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

        1、課前預(yù)習(xí):首先上課前要做預(yù)習(xí),課前預(yù)習(xí)能提前了解將要學(xué)習(xí)的知識(shí)。

        2、記筆記:指的是課堂筆記,每節(jié)課時(shí)間有限,老師一般講的都是精華部分。

        3、課后復(fù)習(xí):通預(yù)習(xí)一樣,也是行之有效的方法。

        4、涉獵課外習(xí)題:多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法。

        5、學(xué)會(huì)歸類總結(jié):學(xué)習(xí)數(shù)學(xué)記得東西很多,如果單純的.記憶每個(gè)公式,不但增加記憶量而且容易忘。

        6、建立糾錯(cuò)本:把經(jīng)常出錯(cuò)的題目集中在一起。

        7、寫考試總結(jié):考試總結(jié)可以幫助找出學(xué)習(xí)之中不足之處,以及知識(shí)的薄弱環(huán)節(jié)。

        8、培養(yǎng)學(xué)習(xí)興趣:興趣是最好的老師,只有有了興趣才會(huì)自主自發(fā)的進(jìn)行學(xué)習(xí),學(xué)習(xí)效率才會(huì)提高。

      【高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)11-05

      高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)10-21

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-21

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-11

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)04-20

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)最新10-21

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【熱】02-22

      【薦】高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-22

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【熱門】02-22

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【薦】02-22