亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      時(shí)間:2022-06-15 14:24:13 總結(jié) 投訴 投稿

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)

        總結(jié)是對(duì)過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書面材料,它可以使我們更有效率,為此要我們寫一份總結(jié)。那么你真的懂得怎么寫總結(jié)嗎?下面是小編收集整理的高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié),希望能夠幫助到大家。

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)1

        1.多面體的結(jié)構(gòu)特征

        (1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

        正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

        (2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。

        正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

        (3)棱臺(tái)可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

        2.旋轉(zhuǎn)體的結(jié)構(gòu)特征

        (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

        (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

        (3)圓臺(tái)可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

        (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

        3.空間幾何體的三視圖

        空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

        三視圖的長度特征:“長對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的.畫法。

        4.空間幾何體的直觀圖

        空間幾何體的直觀圖常用斜二測(cè)畫法來畫,基本步驟是:

        (1)畫幾何體的底面

        在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對(duì)應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

        (2)畫幾何體的高

        在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對(duì)應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)2

        圓的方程定義:

        圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

        直線和圓的位置關(guān)系:

        1、直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

       、佴>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。

        方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較。

       、賒R,直線和圓相離。

        2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

        3、直線和圓相交,這類問題主要是求弦長以及弦的中點(diǎn)問題。

        切線的性質(zhì)

        ⑴圓心到切線的距離等于圓的半徑;

       、七^切點(diǎn)的半徑垂直于切線;

       、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點(diǎn);

       、冉(jīng)過切點(diǎn),與切線垂直的直線必經(jīng)過圓心;

        當(dāng)一條直線滿足

        (1)過圓心;

       。2)過切點(diǎn);

       。3)垂直于切線三個(gè)性質(zhì)中的.兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足。

        切線的判定定理

        經(jīng)過半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線。

        切線長定理

        從圓外一點(diǎn)作圓的兩條切線,兩切線長相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角。

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)3

        直線和平面垂直

        直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

        直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

        直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)

        直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。

        直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

        直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

        多面體

        1、棱柱

        棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

        棱柱的性質(zhì)

        (1)側(cè)棱都相等,側(cè)面是平行四邊形

        (2)兩個(gè)底面與平行于底面的截面是全等的多邊形

        (3)過不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形

        2、棱錐

        棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的'幾何體叫做棱錐

        棱錐的性質(zhì):

        (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

        (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

        3、正棱錐

        正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

        正棱錐的性質(zhì):

        (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

        (3)多個(gè)特殊的直角三角形

        a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

        b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)4

        一次函數(shù)

        一、定義與定義式:

        自變量x和因變量y有如下關(guān)系:

        y=kx+b

        則此時(shí)稱y是x的一次函數(shù)。

        特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

        即:y=kx(k為常數(shù),k≠0)

        二、一次函數(shù)的性質(zhì):

        1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

        即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

        2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

        三、一次函數(shù)的圖像及性質(zhì):

        1.作法與圖形:通過如下3個(gè)步驟

        (1)列表;

        (2)描點(diǎn);

        (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

        2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的.圖像總是過原點(diǎn)。

        3.k,b與函數(shù)圖像所在象限:

        當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

        當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。

        當(dāng)b>0時(shí),直線必通過一、二象限;

        當(dāng)b=0時(shí),直線通過原點(diǎn)

        當(dāng)b<0時(shí),直線必通過三、四象限。

        特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

        這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

        四、確定一次函數(shù)的表達(dá)式:

        已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

        (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

        (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

        (3)解這個(gè)二元一次方程,得到k,b的值。

        (4)最后得到一次函數(shù)的表達(dá)式。

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)5

        集合的有關(guān)概念

        1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

        注意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。

       、诩现械脑鼐哂写_定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個(gè)集合)。

       、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件

        2)集合的表示方法:常用的有列舉法、描述法和圖文法

        3)集合的分類:有限集,無限集,空集。

        4)常用數(shù)集:N,Z,Q,R,N

        子集、交集、并集、補(bǔ)集、空集、全集等概念

        1)子集:若對(duì)x∈A都有x∈B,則AB(或AB);

        2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

        3)交集:A∩B={x|x∈A且x∈B}

        4)并集:A∪B={x|x∈A或x∈B}

        5)補(bǔ)集:CUA={x|xA但x∈U}

        注意:A,若A≠?,則?A;

        若且,則A=B(等集)

        集合與元素

        掌握有關(guān)的術(shù)語和符號(hào),特別要注意以下的符號(hào):(1)與、?的區(qū)別;(2)與的'區(qū)別;(3)與的區(qū)別。

        子集的幾個(gè)等價(jià)關(guān)系

        ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

       、蹵∩CuB=空集CuAB;⑤CuA∪B=IAB。

        交、并集運(yùn)算的性質(zhì)

       、貯∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

        ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

        有限子集的個(gè)數(shù):

        設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

        練習(xí)題:

        已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關(guān)系()

        A)M=NPB)MN=PC)MNPD)NPM

        分析一:從判斷元素的共性與區(qū)別入手。

        解答一:對(duì)于集合M:{x|x=,m∈Z};對(duì)于集合N:{x|x=,n∈Z}

        對(duì)于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)6

        圓的方程定義:

        圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

        直線和圓的位置關(guān)系:

        1.直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系.

       、佴>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

        方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較.

       、賒R,直線和圓相離.

        2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.

        3.直線和圓相交,這類問題主要是求弦長以及弦的中點(diǎn)問題.

        切線的性質(zhì)

       、艌A心到切線的距離等于圓的半徑;

       、七^切點(diǎn)的半徑垂直于切線;

       、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點(diǎn);

       、冉(jīng)過切點(diǎn),與切線垂直的直線必經(jīng)過圓心;

        當(dāng)一條直線滿足

        (1)過圓心;

        (2)過切點(diǎn);

        (3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足.

        切線的'判定定理

        經(jīng)過半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線.

        切線長定理

        從圓外一點(diǎn)作圓的兩條切線,兩切線長相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角.

        圓錐曲線性質(zhì):

        一、圓錐曲線的定義

        1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(定長大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.

        2.雙曲線:到兩個(gè)定點(diǎn)的距離的差的絕對(duì)值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線.即.

        3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時(shí)為雙曲線.

        二、圓錐曲線的方程

        1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

        2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

        3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

        三、圓錐曲線的性質(zhì)

        1.橢圓:+=1(a>b>0)

        (1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(0,1)(5)準(zhǔn)線:x=±

        2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(1,+∞)(5)準(zhǔn)線:x=±(6)漸近線:y=±x

        3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):(,0)(4)離心率:e=1(5)準(zhǔn)線:x=-

      高一數(shù)學(xué)知識(shí)點(diǎn)人教版總結(jié)7

        空間兩條直線只有三種位置關(guān)系:平行、相交、異面

        1、按是否共面可分為兩類:

        (1)共面:平行、相交

        (2)異面:

        異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

        異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。

        兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

        兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

        2、若從有無公共點(diǎn)的角度看可分為兩類:

        (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面

        直線和平面的位置關(guān)系:

        直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

        ①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

       、谥本和平面相交——有且只有一個(gè)公共點(diǎn)

        直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

        空間向量法(找平面的法向量)

        規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角

        由此得直線和平面所成角的取值范圍為[0°,90°]

        最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

        三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

        直線和平面垂直

        直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

        直線與平面垂直的`判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

        直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)

        直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。

        直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

        直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

      【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-31

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)07-12

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)03-07

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精選15篇)03-07

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)15篇07-12

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(15篇)07-12

      高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)07-13

      數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)08-22

      數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)05-11

      高一英語知識(shí)點(diǎn)總結(jié)09-27