亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高一數(shù)學知識點總結(jié)

      時間:2022-06-11 13:30:16 總結(jié) 投訴 投稿

      高一數(shù)學知識點總結(jié)人教版

        總結(jié)是指對某一階段的工作、學習或思想中的經(jīng)驗或情況進行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它可以有效鍛煉我們的語言組織能力,為此我們要做好回顧,寫好總結(jié)。如何把總結(jié)做到重點突出呢?下面是小編幫大家整理的高一數(shù)學知識點總結(jié)人教版,希望能夠幫助到大家。

      高一數(shù)學知識點總結(jié)人教版

      高一數(shù)學知識點總結(jié)人教版1

        1.等比數(shù)列的有關(guān)概念

        (1)定義:

        如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(不為零),那么這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_q為非零常數(shù)).

        (2)等比中項:

        如果a、G、b成等比數(shù)列,那么G叫做a與b的.等比中項.即:G是a與b的等比中項?a,G,b成等比數(shù)列?G2=ab.

        2.等比數(shù)列的有關(guān)公式

        (1)通項公式:an=a1qn-1.

        3.等比數(shù)列{an}的常用性質(zhì)

        (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_,則am·an=ap·aq=a.

        特別地,a1an=a2an-1=a3an-2=….

        (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時q≠-1);an=amqn-m.

        4.等比數(shù)列的特征

        (1)從等比數(shù)列的定義看,等比數(shù)列的任意項都是非零的,公比q也是非零常數(shù).

        (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

        5.等比數(shù)列的前n項和Sn

        (1)等比數(shù)列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數(shù)列求和中的運用.

        (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

      高一數(shù)學知識點總結(jié)人教版2

        空間幾何體表面積體積公式:

        1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

        2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

        3、a-邊長,S=6a2,V=a3

        4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

        5、棱柱S-h-高V=Sh

        6、棱錐S-h-高V=Sh/3

        7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

        8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

        9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

        10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

        11、r-底半徑h-高V=πr^2h/3

        12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

        14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

        15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

        16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

        17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

      高一數(shù)學知識點總結(jié)人教版3

        【直線與方程】

        (1)直線的傾斜角

        定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

        (2)直線的斜率

        ①定義:傾斜角不是90°的直線,它的`傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

       、谶^兩點的直線的斜率公式:

        注意下面四點:

        (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

        (2)k與P1、P2的順序無關(guān);

        (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

        (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

      高一數(shù)學知識點總結(jié)人教版4

        圓的方程定義:

        圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

        直線和圓的位置關(guān)系:

        1、直線和圓位置關(guān)系的判定方法一是方程的觀點,即把圓的'方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

       、佴>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。

        方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

        ①dR,直線和圓相離。

        2、直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

        3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

        切線的性質(zhì)

        ⑴圓心到切線的距離等于圓的半徑;

        ⑵過切點的半徑垂直于切線;

        ⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

       、冉(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

        當一條直線滿足

       。1)過圓心;

       。2)過切點;

       。3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。

        切線的判定定理

        經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。

        切線長定理

        從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

      高一數(shù)學知識點總結(jié)人教版5

        函數(shù)的奇偶性(整體性質(zhì))

        (1)偶函數(shù)

        一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

        (2).奇函數(shù)

        一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

        (3)具有奇偶性的函數(shù)的圖象的特征

        偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

        利用定義判斷函數(shù)奇偶性的步驟:

        ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;

        ○2確定f(-x)與f(x)的關(guān)系;

        ○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

        (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

        (3)利用定理,或借助函數(shù)的圖象判定.

        9、函數(shù)的`解析表達式

        (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

        (2)求函數(shù)的解析式的主要方法有:

        1)湊配法

        2)待定系數(shù)法

        3)換元法

        4)消參法

        10.函數(shù)(小)值(定義見課本p36頁)

        ○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值

        ○2利用圖象求函數(shù)的(小)值

        ○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

      高一數(shù)學知識點總結(jié)人教版6

        形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的一切實數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線。

        由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

        如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

        當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

        當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

        知識點:

        1.過反比例函數(shù)圖象上任意一點作兩坐標軸的.垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

        2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

      高一數(shù)學知識點總結(jié)人教版7

        直線和平面垂直

        直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

        直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

        直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

        直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

        直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

        直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

        多面體

        1、棱柱

        棱柱的`定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

        棱柱的性質(zhì)

        (1)側(cè)棱都相等,側(cè)面是平行四邊形

        (2)兩個底面與平行于底面的截面是全等的多邊形

        (3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形

        2、棱錐

        棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

        棱錐的性質(zhì):

        (1)側(cè)棱交于一點。側(cè)面都是三角形

        (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

        3、正棱錐

        正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

        正棱錐的性質(zhì):

        (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

        (3)多個特殊的直角三角形

        a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

        b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

      高一數(shù)學知識點總結(jié)人教版8

        集合的有關(guān)概念

        1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

        注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

        ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

       、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

        2)集合的表示方法:常用的.有列舉法、描述法和圖文法

        3)集合的分類:有限集,無限集,空集。

        4)常用數(shù)集:N,Z,Q,R,N

        子集、交集、并集、補集、空集、全集等概念

        1)子集:若對x∈A都有x∈B,則AB(或AB);

        2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

        3)交集:A∩B={x|x∈A且x∈B}

        4)并集:A∪B={x|x∈A或x∈B}

        5)補集:CUA={x|xA但x∈U}

        注意:A,若A≠?,則?A;

        若且,則A=B(等集)

        集合與元素

        掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。

        子集的幾個等價關(guān)系

        ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

       、蹵∩CuB=空集CuAB;⑤CuA∪B=IAB。

        交、并集運算的性質(zhì)

        ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

        ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

        有限子集的個數(shù):

        設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

        練習題:

        已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關(guān)系()

        A)M=NPB)MN=PC)MNPD)NPM

        分析一:從判斷元素的共性與區(qū)別入手。

        解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}

        對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

      【高一數(shù)學知識點總結(jié)】相關(guān)文章:

      高一數(shù)學知識點總結(jié)07-31

      高一數(shù)學必修一知識點總結(jié)07-12

      高一數(shù)學知識點總結(jié)(15篇)03-07

      高一數(shù)學知識點總結(jié)(精選15篇)03-07

      高一數(shù)學必修一知識點總結(jié)15篇07-12

      高一數(shù)學必修一知識點總結(jié)(15篇)07-12

      高一數(shù)學必修一函數(shù)圖像知識點總結(jié)07-13

      數(shù)學的知識點總結(jié)08-22

      數(shù)學的知識點總結(jié)05-11

      高一英語知識點總結(jié)09-27