亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高中數(shù)學必修知識點總結

      時間:2022-06-05 03:15:11 總結 投訴 投稿

      高中數(shù)學必修知識點總結

        總結是把一定階段內的有關情況分析研究,做出有指導性的經(jīng)驗方法以及結論的書面材料,它可以幫助我們有尋找學習和工作中的規(guī)律,不如立即行動起來寫一份總結吧。你所見過的總結應該是什么樣的?以下是小編收集整理的高中數(shù)學必修知識點總結,希望對大家有所幫助。

      高中數(shù)學必修知識點總結

      高中數(shù)學必修知識點總結1

        一、平面的基本性質與推論

        1、平面的基本性質:

        公理1如果一條直線的兩點在一個平面內,那么這條直線在這個平面內;

        公理2過不在一條直線上的三點,有且只有一個平面;

        公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

        2、空間點、直線、平面之間的位置關系:

        直線與直線—平行、相交、異面;

        直線與平面—平行、相交、直線屬于該平面(線在面內,最易忽視);

        平面與平面—平行、相交。

        3、異面直線:

        平面外一點A與平面一點B的連線和平面內不經(jīng)過點B的直線是異面直線(判定);

        所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

        兩條直線不是異面直線,則兩條直線平行或相交(反證);

        異面直線不同在任何一個平面內。

        求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角

        二、空間中的平行關系

        1、直線與平面平行(核心)

        定義:直線和平面沒有公共點

        判定:不在一個平面內的一條直線和平面內的一條直線平行,則該直線平行于此平面(由線線平行得出)

        性質:一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

        2、平面與平面平行

        定義:兩個平面沒有公共點

        判定:一個平面內有兩條相交直線平行于另一個平面,則這兩個平面平行

        性質:兩個平面平行,則其中一個平面內的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

        3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

        三、空間中的垂直關系

        1、直線與平面垂直

        定義:直線與平面內任意一條直線都垂直

        判定:如果一條直線與一個平面內的兩條相交的.直線都垂直,則該直線與此平面垂直

        性質:垂直于同一直線的兩平面平行

        推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

        直線和平面所成的角:【0,90】度,平面內的一條斜線和它在平面內的射影說成的銳角,特別規(guī)定垂直90度,在平面內或者平行0度

        2、平面與平面垂直

        定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內分別作垂直于棱的兩條射線所成的角)

        判定:一個平面過另一個平面的垂線,則這兩個平面垂直

        性質:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直

      高中數(shù)學必修知識點總結2

        一、直線與方程高考考試內容及考試要求:

        考試內容:

        1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

        2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;

        考試要求:

        1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程;

        2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關系;

        二、直線與方程

        課標要求:

        1.在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素;

        2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

        3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關系;

        4.會用代數(shù)的方法解決直線的有關問題,包括求兩直線的交點,判斷兩條直線的位置關系,求兩點間的距離、點到直線的距離以及兩條平行線之間的距離等。

        要點精講:

        1.直線的傾斜角:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當直線l與x軸平行或重合時,規(guī)定α= 0°.

        傾斜角α的取值范圍:0°≤α<180°. 當直線l與x軸垂直時, α= 90°.

        2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

       。1)當直線l與x軸平行或重合時,α=0°,k = tan0°=0;

       。2)當直線l與x軸垂直時,α= 90°,k 不存在。

        由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

        3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

       。ㄈ魓1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

        4.兩條直線的平行與垂直的判定

       。1)若l1,l2均存在斜率且不重合:

       、伲虎

        注: 上面的`等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結論并不成立。

       。2)

        若A1、A2、B1、B2都不為零。

        注意:若A2或B2中含有字母,應注意討論字母=0與0的情況。

        兩條直線的交點:兩條直線的交點的個數(shù)取決于這兩條直線的方程組成的方程組的解的個數(shù)。

        5.直線方程的五種形式

        確定直線方程需要有兩個互相獨立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。

        直線的點斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點式不能表示平行或重合兩坐標軸的直線;截距式不能表示平行或重合兩坐標軸的直線及過原點的直線。

        6.直線的交點坐標與距離公式

        (1)兩直線的交點坐標

        一般地,將兩條直線的方程聯(lián)立,得方程組

        若方程組有唯一解,則兩條直線相交,解即為交點的坐標;若方程組無解,則兩條直線無公共點,此時兩條直線平行。

       。2)兩點間距離

        兩點P1(x1,y1),P2(x2,y2)間的距離公式

        特別地:軸,則、軸,則

       。3)點到直線的距離公式

        點到直線的距離為:

       。4)兩平行線間的距離公式:

        若,則:

        注意點:x,y對應項系數(shù)應相等。

      高中數(shù)學必修知識點總結3

       、佼惷嬷本定義:不同在任何一個平面內的兩條直線

       、诋惷嬷本性質:既不平行,又不相交。

       、郛惷嬷本判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

        ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

        求異面直線所成角步驟:

        A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

       。7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

        (8)空間直線與平面之間的位置關系

        直線在平面內——有無數(shù)個公共點。

        三種位置關系的符號表示:aαa∩α=Aa‖α

       。9)平面與平面之間的位置關系:平行——沒有公共點;α‖β

        相交——有一條公共直線。α∩β=b

        2、空間中的平行問題

       。1)直線與平面平行的判定及其性質

        線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。

        線線平行線面平行

        線面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

        那么這條直線和交線平行。線面平行線線平行

        (2)平面與平面平行的判定及其性質

        兩個平面平行的判定定理

       。1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

       。ň面平行→面面平行),

       。2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行。

       。ň線平行→面面平行),

       。3)垂直于同一條直線的.兩個平面平行,

        兩個平面平行的性質定理

       。1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行。(面面平行→線面平行)

       。2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

        3、空間中的垂直問題

       。1)線線、面面、線面垂直的定義

       、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

       、诰面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

       、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

        (2)垂直關系的判定和性質定理

       、倬面垂直判定定理和性質定理

        判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。

        性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

       、诿婷娲怪钡呐卸ǘɡ砗托再|定理

        判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

        性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。

        4、空間角問題

       。1)直線與直線所成的角

       、賰善叫兄本所成的角:規(guī)定為。

       、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

       、蹆蓷l異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

       。2)直線和平面所成的角

       、倨矫娴钠叫芯與平面所成的角:規(guī)定為。②平面的垂線與平面所成的角:規(guī)定為。

       、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。

        求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

        在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

        在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。

       。3)二面角和二面角的平面角

       、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

        ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

       、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。

        兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

       、芮蠖娼堑姆椒

        定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

        垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

      高中數(shù)學必修知識點總結4

        1、柱、錐、臺、球的結構特征

       。1)棱柱:

        幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

        (2)棱錐

        幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

        (3)棱臺:

        幾何特征:①上下底面是相似的'平行多邊形②側面是梯形③側棱交于原棱錐的頂點

       。4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

        幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

        (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

        幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

       。6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

        幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

        (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

        幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

        2、空間幾何體的三視圖

        定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

        注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

        3、空間幾何體的直觀圖——斜二測畫法

        斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

       、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

        4、柱體、錐體、臺體的表面積與體積

       。1)幾何體的表面積為幾何體各個面的面積的和。

       。2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

       。3)柱體、錐體、臺體的體積公式

      【高中數(shù)學必修知識點總結】相關文章:

      高中數(shù)學知識點必修總結07-29

      高中數(shù)學知識點必修總結4篇07-29

      必修一知識點總結06-09

      數(shù)學必修四知識點總結04-25

      必修生物一知識點總結05-19

      生物必修二知識點總結07-04

      生物必修三知識點總結07-23

      生物必修三知識點總結04-21

      數(shù)學必修五知識點總結08-23

      必修二數(shù)學知識點總結07-12